期刊文献+

基于Δ-tree的递归深度优先KNN查询算法 被引量:2

Recursive Depth-first KNN Query Algorithm Based on Δ-tree
下载PDF
导出
摘要 基于Δ-tree提出一种用于高维数据的主存K最近邻(KNN)查询算法。该算法利用递归调用方法深度优先遍历Δ-tree,找到距离查询点较近的叶子节点,并选择其中较优的KNN候选点进行查询,从而缩小修剪距离、提高查询速度。实验结果表明,与已有算法相比,该算法具有更高的查询效率。 This paper proposes an algorithm based on Δ-tree to support efficient main memory K-Nearest Neighbor(KNN) query in high-dimensional databases.By recursive transfer method and depth-first traversal of Δ-tree,the algorithm finds the leaf nodes that are nearer to query point and adopts the superior KNN candidates in them to reduce pruning distance,thus lesses calculation amount and accelerates the nearest neighbors search.Experimental results show that this algorithm can improve query efficiency.
作者 刘艳 郝忠孝
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期48-50,共3页 Computer Engineering
基金 黑龙江省自然科学基金资助项目(F2006-01)
关键词 高维索引 主存 K最近邻查询 深度优先搜索 high-dimensional index main memory K-Nearest Neighbor(KNN) query depth-first search
  • 相关文献

参考文献6

二级参考文献25

  • 1Shim K, Srikant R, Agrawal R. High-dimensional similarity joins [C] //Proc of the 13th Int Conf on Data Engineering. Los Alamitos, CA.. IEEE Computer Society, 1997:301-311.
  • 2Huang Y W, Jing N, Rundensteiner E A. Spatial joins using r-trees: Breadth-first traversal with global optimizations [C] //Proc of the 23rd Int Conf on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 1997:396-405.
  • 3Bohm C, Kriegel H-P. A cost model and index architecture for the similarity join [C] //Proc of the Int Conf on Data Engineering. Los Alamitos. CA.. IEEE Computer Society, 2001 : 411-420.
  • 4Sharer J C, Agrawal R. Parallel algorithms for high- dimensional similarity joins for data mining applications [C] //Proe of the 23rd Int Conf on Very Large Data Bases (VLDB'97). San Francisco, CA: Morgan Kaufmann, 1997: 176-185.
  • 5Koudas N, Sevcik K C. High dimensional similarity joins: Algorithms and performance evaluation [C] //Proc of the 14th Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 1998:466-475.
  • 6Bohm C, Braunmuller B, Krebs F, et al. Epsiton grid order: An algorithm for the similarity join on massive high dimensional data [C] //Proc of the 2001 ACM SIGMOD Int Conf on Management of data. New York: ACM, 2001 : 379- 388.
  • 7Kalashnikov D V, Prabhakar S. Similarity join for low- and high-dimensional data [C] //Proc of the 8th lnt Conf on Database Systems for Advanced Applications (DASFAA 2003). Los Alamitos, CA: IEEE Computer Society, 2003.
  • 8Jolliffe I T. Principal Component Analysis [M]. Berlin: Springer, 1986.
  • 9Cui B, Ooi B C, Su J W, et al. Indexing high-dimensional data for efficient inmemory similarity seareh [J]. IEEE Trans on Knowledge and Data Engineering, 2005,17(3): 339-353.
  • 10Berchtold S, Bohm C, Keim D, et al. A cost model for nearest neighbor search in high-dimensional data space[C]// Proe of the 16th ACM PODS Symp on Principles of Database Systems. New York: ACM, 1997:78-86.

共引文献7

同被引文献11

  • 1张淑雅,赵一鸣,李均利.基于SVM的图像分类算法与实现[J].计算机工程与应用,2007,43(25):40-42. 被引量:32
  • 2翟俊海,张素芳,王熙照.基于小波变换和支持向量机的图像分类[J].河北大学学报(自然科学版),2007,27(3):317-321. 被引量:1
  • 3Tony van Gestel,Johan A.K. Suykens,Bart Baesens,Stijn Viaene,Jan Vanthienen,Guido Dedene,Bart de Moor,Joos Vandewalle.Benchmarking Least Squares Support Vector Machine Classifiers[J].Machine Learning.2004(1)
  • 4Slipa-Anan C,,Hartley R.Optimised KD-trees for fast im-age descriptor matching[].Proceedings of theth IEEE Conference on Computer Vision and Pattern Recognition.2008
  • 5Beis J S,Lowe D G.Shape indexing using approximate nearest-neighbor search in high-dimensional spaces[].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1997
  • 6Vries A D,,Mamoulis N,Nes N,et al.Efficient KNN search on vertically decomposed data[].Proceedings of the ACM SIGMOD International Conference on Management of Data.2002
  • 7Yu L,Liu H.Efficient feature selection via analysis of relevance and redundancy[].Journal of Machine Learning Research.2004
  • 8Chih-Wei Hsu,Chih-Jen Lin.A comparison of methods for multi-class support vector machines[].IEEE Transactions on Neural Networks.2002
  • 9姚伏天,钱沄涛.用于高光谱遥感图像分类的空间约束高斯过程方法[J].南京大学学报(自然科学版),2009,45(5):665-670. 被引量:5
  • 10刘艳,郝忠孝.一种基于主存Δ-tree的高维数据KNN连接算法[J].计算机研究与发展,2010,47(7):1234-1243. 被引量:7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部