期刊文献+

基于线性阵列的欠定盲源分离几何分析 被引量:2

Geometrical Analysis of Underdetermined Blind Source Separation Based on Linear Array
下载PDF
导出
摘要 采用线性阵列对欠定盲源分离问题进行建模,研究源信号的空间分布对欠定盲源分离的影响。利用二步法和稀疏分量分析解决欠定盲源分离问题,其中,混合矩阵的估计主要利用稀疏源信号的线性混合信号沿混合矩阵列向量方向线性聚类的特性。理论分析和仿真实验结果表明,当源信号在空间处于某些特定区域时,若采用线性聚类方法,混合矩阵是不可估计的,从而无法正确实现欠定盲源分离。 This paper models the problem of underdetermined blind source separation using linear array and discusses the effect of space distribution of sources on underdetermined blind source separation.At present,underdetermined blind source separation is mainly discussed in the context of sparse component analysis and is usually resolved by means of two-step strategy.The characteristic that linear mixture of sparse source signals clusters along vectors of mixing matrix is used to estimate the mixing matrix.It is theoretically analyzes that mixing matrix can not be correctly estimated when sources are located in some areas using linear clustering method.Hence,underdetermined blind source separation is intractable.Simulations confirm the correctness of theoretical analysis.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期77-78,81,共3页 Computer Engineering
关键词 欠定盲源分离 可辨识性 聚类 稀疏 线性阵列 underdetermined blind source separation identifiability clustering sparse linear array
  • 相关文献

参考文献6

  • 1Eriksson J,Koivunen V.Identifiability and Separability and Uniqueness of Linear ICA Models[J].IEEE Signal Processing Letters,2004,11(7): 601-604.
  • 2Bofill P,Zibulevsky M.Underdetermined Blind Source Separation Using Sparse Representations[J].Signal Processing,2001,81(11): 2353-2362.
  • 3Li Yuanqing,Cichocki A,Amari S.Analysis of Sparse Represen- tation and Blind Source Separation[J].Neural Computation,2004,16(6): 1193-1234.
  • 4Zibulevsky M,Kisilev P,Zeevi Y Y,et al.Blind Source Separation via Multinode Sparse Representation[C]//Proc.of Conference on Advances in Neural Information Processing Systems.Cambridge,USA: MIT Press,2002: 1049-1056.
  • 5Lin J K,Grier D G,Cowan J D.Feature Extraction Approach to Blind Source Separation[C]//Proc.of IEEE Workshop on Neural Networks for Signal Processing.Amelia Island,USA: IEEE Press,1997: 398-405.
  • 6王国鹏,刘郁林,罗颖光.弱稀疏性下的欠定语音盲分离方法[J].计算机工程,2009,35(18):246-248. 被引量:2

二级参考文献5

  • 1Haykin S. Unsupervised Adaptive Filtering: Blind Source Separation[M]. New York, USA: Wiley J &Sons, 2000.
  • 2Rickard S, Yilmaz Z. On the Approximate W-disjoint Orthogonality of Speech[C]//Proc. of ICASSP'02. Orlando, Florida, USA: [s. n.], 2002: 529- 532.
  • 3Aissa E B A, Meraim A K, Grenier Y. Underdetermined Blind Source Separation of Audio Sources in Time-frequency Domain[C]//Proc. of the Signal Processing with Adaptive Sparse Structured Representations. Rennes, France: [s. n.], 2005.
  • 4He Z S, Cichocki A. K-subspace Clustering and Its Application in Sparse Component Anatysis[C]//Proceedings of the 14th European Symposium on Artificial Neural Networks. Bruges, Belgium: [s. n.]. 2006.
  • 5Theis F J. Langa E W. Puntonet C G. A. Geometric Algorithm for Overcomplete Linear ICA[J]. Neuro Computing, 2004, 56(18): 381-398.

共引文献1

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部