期刊文献+

基于形状感应的运动目标跟踪算法 被引量:1

Moving Object Tracking Algorithm Based on Shape Induction
下载PDF
导出
摘要 Mean-Shift算法无法自动跟踪目标,且对目标形状要求较苛刻。针对该问题,提出一种基于形状感应的运动目标跟踪算法,采用混合高斯分布对背景建模,协助Mean-Shift算法自动定位初始目标,增加描述形状的协方差参数,使跟踪能感受到目标形状的变化。实验结果表明,该算法基本解决了自动定位问题及形状变化问题,在保证实时性的前提下,跟踪准确度提高40%以上。 A moving object tracking algorithm based on shape induction is proposed to solve problems of the Mean-Shift algorithm,which can not track the targets automatically and adapt well to the shape changes of objects.It obtains initial contour of objects automatically by building a background image with mixture Gaussian distribution.The parameter of covariance matrix is added to Mean-Shift algorithm to feel the shape changes of objects.Experimental results indicate this algorithm solves the problems concerned with automatic positioning and shape changes and the accuracy is increased by 40% at least with real-time guaranteed.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期143-144,共2页 Computer Engineering
基金 国家自然科学基金资助项目(60873003) 广东省教育部产学研结合基金资助项目(2009B090300302)
关键词 目标跟踪 高斯混合模型 MEAN-SHIFT算法 协方差 形状 object tracking Gaussian Mixture Model(GMM) Mean-Shift algorithm covariance shape
  • 相关文献

参考文献7

二级参考文献44

  • 1董梅,杨曾,张健,王能.基于信号强度的无线局域网定位技术[J].计算机应用,2004,24(12):49-52. 被引量:36
  • 2刘龙,刘贵忠,刘洁瑜,王占辉.一种基于MPEG压缩域的运动对象分割算法[J].西安交通大学学报,2004,38(12):1264-1267. 被引量:5
  • 3余涛,黄书宝,葛昭攀,陈宇亮,施安.无线局域网环境下的位置服务研究[J].计算机工程,2005,31(14):122-124. 被引量:3
  • 4邱丹丹,马洪超,杨耘,贾鹏.基于多源卫星图像融合的水坝检测方法的研究[J].遥感学报,2006,10(4):449-455. 被引量:3
  • 5Bahl P, Padmanabhau V N. RADAR: An In-building RF-based User Location and Tracking System[C]//Proc. of 2000 Annual Joint Conference of the IEEE Computer and Communications Societies. [S. l.]: IEEE Computer Society, 2000.
  • 6Roos T, Myllymaki E Tirri H, et al. A Probabilistic Approach to WLAN User Location Estimation[J]. International Journal of Wireless Information Networks, 2002, 9(3): 155-164.
  • 7Moustafa A. Multivariate Analysis for WLAN Location Determination Systems[C]//Proc. of the 2nd Annual Int'l Conf. on Mobile and Ubiquitous Systems: Networking and Services. San Diego, California, USA: ACM Press, 2005.
  • 8Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(2): 1-38.
  • 9Moravec H.Visual mapping by a robot rover[C]//Proceedings of the International Joint Conference on Artificial Intelligence.1979:598-600.
  • 10Harris C,Stephens M.A combined corner and edge detector[C]//The 4th Alvey Vision Conference.1988:147-151.

共引文献46

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部