期刊文献+

基于多尺度特征提取的均值漂移目标跟踪算法 被引量:2

Mean Shift Target Tracking Algorithm Based on Multi-scale Feature Extraction
下载PDF
导出
摘要 为在图像对比度较低、相似目标过多等情况下较好地实现目标跟踪,提出一种基于多尺度特征提取的均值漂移跟踪算法。前一帧目标区域的特征点经匹配得到后续帧目标区域的特征点,利用所得特征点集的中心坐标修正均值漂移搜索窗位置,以此为约束条件,减小均值漂移迭代产生的偏差。实验结果表明,该算法可以提高跟踪精度、鲁棒性及实时性。 This paper proposes Mean Shift algorithm based on multi-scale feature extraction for fulfilling the target tracking in complex environment such as images with low contrast and to many similar targets.After the feature points being matched,next frame feature points are gotten.The center of next frame feature points is took as the center of searching window by which Mean Shift searching windows are continually modified and iteration deviation is reduced.Experimental resutls show that the robustness,precision and real-time performance of the algorithm are improved,and its iteration frequency is reduced.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期164-167,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60910005) 中央高校基本科研业务费基金资助项目(JUSRP211A36 JUSRP111A41)
关键词 多尺度特征 特征提取 特征点匹配 均值漂移 目标跟踪 multi-scale feature feature extraction feature point matching Mean Shift target tracking
  • 相关文献

参考文献7

  • 1Fukunaga K,Hostetler L D.The Estimation of the Gradient of a Density Function,with Applications in Pattern Recognition[J].IEEE Trans.on Information Theory,1975,21(1): 32-40.
  • 2Cheng Yizong.Mean Shift,Mode Seeking,and Clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1995,17(8): 790-799.
  • 3Comaniciu D,Ramesh V,Meer P.Kernel-based Object Tracking[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(5): 564-577.
  • 4Lowe D G.Object Recognition from Local Scale-invariant Features[C]//Proc.of International Conference on Computer Vision.Corfu,Greece:[s.n.],1999.
  • 5Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2): 91-110.
  • 6孔军,汤心溢,蒋敏.基于多尺度特征提取的运动目标定位研究[J].红外与毫米波学报,2011,30(1):21-26. 被引量:10
  • 7于丽莉,戴青.一种改进的SIFT特征匹配算法[J].计算机工程,2011,37(2):210-212. 被引量:45

二级参考文献24

  • 1周颜军.数据结构[M].长春:吉林科学技术出版社,2003.
  • 2Moravee H P. Towards Automatic Visual Obstacle Avoidance[C]l/ Proc. of the 5th International Joint Conference on Artificial Intelligence. [S. l.]: Springer-Velag, 1977.
  • 3Harris C, Stephens M. A Combined Corner and Edge Detector[C]// Proc. of the 4th Alvey Vision Conference. Manchester, UK: [s. n.], 1988.
  • 4Lowc D G, Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 5Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 6Yan Ke, Sukthankar R. PCA-SIPT: A More Distinctive Repre- sentation for Local Image Descriptors[C]//Proc. of CVPR'04. [S. l.]: IEEE Press, 2004.
  • 7Mortensen E N, Deng Hongli, Shapiro L. A SIFT Descriptor with Global Context[C]//Proc. of CVPR'05. San Diego, California, USA: IEEE Press, 2005.
  • 8Moreno P, Bernardino A, Victor S J. Improving the SIFT Descriptor with Smooth Derivative Filters[J]. Pattern Recognition Letters, 2009, 30(1): 18-26.
  • 9Petrou K A, The Trace Transform and Its Applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(8): 811-828.
  • 10Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Filting with Applications to Image Analysis and Automated Cartography[J]. Communications of ACM, 1981, 24(6): 381-395.

共引文献53

同被引文献24

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3朱晖.运动弱目标图像检测与跟踪方法研究[D].武汉:华中理工大学,1993.
  • 4MORELLAS V,ROEBER P. Programming cameras and Pan-Tilts with DirectX and Java[M]. Morgan.. Morgan Kaufmann Publishers, 2003..1 - 15.
  • 5CHENG Y. Mean Shift, Mode Seeking, and Clustering[,J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(3) : 790 - 799.
  • 6COMANICIU D, RAMESH V. Real-time tracking of Non-Rigid objects using Mean Shift[C] //IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2000:142 - 149.
  • 7STAUFFER C, GRIMSON W. Adptive background mixture models for real-time tracking[C] // In Proceedings, 1999 IEEE Computer Society Coference on Computer Vision and Pattern Recognition. New York: IEEE, 1999:132 - 138.
  • 8BENHIMANE V. Real-time image-based tracking of planes using efficient second-order minimization [C]// International Conference on Intelligent Robots and Systems. New York: IEEE, 2004:943- 948.
  • 9COMANICIU D, RAMESH V, MEER P. Kernel-Based Object Tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(5) : 564 - 577.
  • 10COMANICIU D, RAMESH V, MEER P. Kernel-based tracking [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence,2003,25 (5): 564-577.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部