期刊文献+

求解无约束优化问题的仿水循环算法 被引量:2

Water Cycle-like Algorithm for Unconstrained Optimization Problem
下载PDF
导出
摘要 针对无约束优化问题,根据自然界水循环过程,提出一种仿水循环算法。其中包括汇流、分流、下渗、蒸发、降雨等粒子选优步骤,通过判断种群数量、粒子质量和位置,对种群和粒子进行相应调整,智能且动态地适应当前搜索的要求,同时采用新的相对重力粒子寻优机制,计算粒子相对重力的方向和大小,引导粒子持续向更优的位置移动。理论分析与仿真结果均表明,该算法能加快种群迭代速度,提高粒子搜索精度,防止粒子陷入局部最优。 According to unconstrained optimization problem,inspiring from water cycle process,a new global optimization algorithm called Water Cycle-like Algorithm(WCA) is presented.Five optimal selected processes of particles,such as confluence,diffluence,infiltration,evaporation and rainfall,are given.Through measure particles' population,location and weight,these processes adjust particles and population to adapt the need of current searching,intellectually and dynamically.A new optimal searching mechanism of relative gravity is proposed too,which uses relative gravity to guide particles to a better location.Theoretical analysis and simulation results prove that the algorithm can increase iteration speed,enhance search accuracy,prevent the situation that particles fall into local best.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期187-190,共4页 Computer Engineering
基金 国家自然科学基金资助项目(50767001) 国家"863"计划基金资助项目(2007AA04Z197) 高等学校博士学科点专项科研基金资助项目(20094501110002) 广西壮族自治区研究生教育创新计划基金资助项目(105931003007)
关键词 无约束优化 全局最优 仿水循环 重力机制 相对重力 unconstrained optimization global optimum water cycle-like gravity mechanism relative gravity
  • 相关文献

参考文献4

  • 1Torn A,Ali M M,Viitanen S.Stochastic Global Optimization: Problem Classes and Solution Techniques[J].Journal of Global Optimization,1999,14(3): 437-447.
  • 2Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc.of the IEEE Int’l Conf.on Neural Networks.Perth,Australia:[s.n.],1995.
  • 3Birbil S I.Stochastic Global Optimization Techniques[D].Raleigh,North Carolina,USA: North Carolina State University,2002.
  • 4赵传信,王汝传,季一木.动态环境下的种群扩散粒子群优化算法[J].计算机工程,2010,36(19):24-26. 被引量:3

二级参考文献6

  • 1Hu Xiaohui, Eberhart R C. Adaptive Particle Swarm Optimization: Detection and Response to Dynamic Systems[C]//Proc. of 2001 Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001.
  • 2Carlisle A, Dozier G Tracking Changing Extrema with Adaptive Particle Swarm Optimizer[C]//Proc. of WAC'02. Orlando, Florida, USA: [s. n.], 2002.
  • 3Blackwell T, Branke J. Multi-swarm, Exclusion, and Anticonvergence in Dynamic Environments[J]. IEEE Trans. on Evolutionary Computation, 2006, 10(4): 459-472.
  • 4Yang Shengxiang. Non-stationary Problem Optimization Using the Primal-dual Genetic Algorithm[C]//Proc. of 2003 Congress on Evolutionary Computation. Canberra, Australia: [s. n.], 2003.
  • 5de Jong K A. A Test Problem Generator for Non-stationary Environments[C]//Proc. of 1999 Congress on Evolutionary Computation. Washington D. C., USA: [s. n.], 1999.
  • 6焦巍,刘光斌.一种新的双子群PSO算法[J].计算机工程,2009,35(16):173-174. 被引量:4

共引文献2

同被引文献15

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部