期刊文献+

FCBLUP模型在高频金融数据中的应用

Application of FCBLUP Model in High-frequency Financial Data
下载PDF
导出
摘要 将函数延拓最优线性无偏估计(FCBLUP)引入高频金融数据挖掘中,对离散观测值序列建立函数数据模型,并进行预测。选取上证收盘价格为实验数据,建立FCBLUP模型。为能对预测效果进行有效的评价与定位,设立基于ARMA模型的预测组。实验结果表明,FCBLUP预测效果较ARMA模型更理想,FCBLUP预测误差除在小段预测区间略大于ARMA外,其余时刻均低于ARMA预测。 The Best Linear Unbiased Prediction for Function Continuation(FCBLUP) is introduced into high-frequency financial data mining,through which this paper constructs discrete observation sequence into functional data model to predict.Adopting high-frequency Shanghai stock index as test data to establish the FCBLUP model,meanwhile,in order to have an effective evaluation and positioning,the prediction model based on Auto Regression Moving Average(ARMA) is built as another group.Experimental results show that the prediction effect of FCBLUP is better than ARMA,its error is slightly larger than ARMA only in small interval,but it is significantly lower than the ARMA at the other times.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期257-260,共4页 Computer Engineering
基金 教育部人文社会科学研究基金资助项目(09YJA630036) 江西省自然科学基金资助项目(2010GZS0034)
关键词 函数延拓 函数数据 最优线性无偏估计 自回归移动平均 高频数据 functional continuation functional data Best Linear Unbiased Prediction(BLUP) Auto Regression Moving Average(ARMA) high-frequency data
  • 相关文献

参考文献12

  • 1Engle R F,Russell J.Analysis of High Frequency Financial Data[EB/OL].(2004-12-21).http://irinaclimbs.com/Papers/HFT_ DATA_engle.pdf.
  • 2张高煜,褚少鹤.基于粒子滤波的高频金融时间序列预测[J].现代电子技术,2009,32(18):117-119. 被引量:3
  • 3马野,刘文博,董小刚,王纯杰.基于小波分解的高频金融时间序列预测[J].长春工业大学学报,2009,30(4):374-378. 被引量:6
  • 4Mar?ek D,Mar?ek M.Prediction of High-frequency Data: Appli- cation to Exchange Rates Time Series[EB/OL].(2009-09-10).
  • 5http://www.ekf.vsb.cz/shared/uploadedfiles/cul33/Marcek.Dusan_1.pdf.
  • 6Bauwens L,Hautsch N.Modelling Financial High Frequency Data Using Point Processes[M].Heidelberg,Germany: Springer-Verlag,2009.
  • 7韩丽娜,耿国华.基于小波变换的真彩图像降噪与增强[J].计算机工程,2010,36(12):224-225. 被引量:15
  • 8Goldberg Y,Ritov Y,Mandelbaum A.The Best Linear Unbiased Estimator for Continuation of a Function[EB/OL].(2010-05-11).http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.1863v1.pdf.
  • 9Ramsay J O,Silverman B W.Functional Data Analysis[M].New York,USA: Springer-Verlag,1997.
  • 10Chan F K W,So H C,Zheng J,et al.Best Linear Unbiased Estimator Approach for Time-of-arrival Based Localization[J].IET Signal Process,2008,2(2): 156-162.

二级参考文献25

  • 1石美红,李永刚,张军英,吴戴明.一种新的彩色图像增强方法[J].计算机应用,2004,24(10):69-71. 被引量:7
  • 2高静,张世英.高频时间序列基于小波分析的预测[J].统计与决策,2006,22(17):4-5. 被引量:7
  • 3王叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992..
  • 4阎静文.数字图象处理[M].北京:国防工业出版社,2007.
  • 5Andersen T G,Tim Bollerslev.Answering the Skeptics:Yes,Standard Volatility Models do Provide Accurate Forecasts[J].International Economic Review,1998,39(4):885-905.
  • 6Andersen T G,Tim Bollerslev,F X Diebold,et al.Exchange Rate Returns Standardized by Realized Volatility are(nearly)Gaussian[J].Multinational Finance Journal,2000,4:159-179.
  • 7Andersen T G,Tim Bollerslev,F X Diebold,et al.The Distribution of Realized Exchange Rate Volatility[J].Journal of the American Statistical Assoeiation,2001,96:42-55.
  • 8Andersen T G,Tim Bollerslev F X,Diebod,et al.The Distribution of Realized Stock Return Volatility[J].Journal of Financial Economics,2001,61:43-76.
  • 9Andersen T G,Tim Bollerslev F X Diebod,et al.Modeling and Forecasting Realized Volatility[J].Econometrica,2003,71(2):579-625.
  • 10Andersen T G,Tim Bollerslev F X,Diebold.Parametric and Nonparametric Volatility Measurement[Z].Handbook of Financial Econometrics,Amsterdam:North-Holland,2005.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部