期刊文献+

基于四元数小波变换域统计模型的图像去噪 被引量:6

Image Denoising Using Statistical Model Based on Quaternion Wavelet
下载PDF
导出
摘要 图像去噪是图像处理的基本问题,四元数小波变换是1种新的多尺度分析工具。图像经四元数小波变换后,其小波系数不仅在尺度间具有相关性,而且在尺度内也具有一定的相关性。首先利用层内及层间的相关性,用非高斯分布对四元数小波系数进行建模,然后给出分类准则,把小波系数分类为重要系数和不重要系数,再用非高斯分布模型对重要系数与其邻域系数进行建模,最后运用最大后验估计原图像的小波系数,从而达到去除图像噪声的目的。仿真实验表明,文中方法不仅可以获得较高的峰值信噪比,而且在视觉上达到明显的去噪效果。 Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis of image processing tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale and in interscale have certain correlations. Firstly, non -Gaussian distribution model is used to describe the correlation of quaternion wavelet coefficients in interscale and intrascale, and classify important coefficients and unimportant coefficients. Then the Gaussian distribution model is used to model the important coefficients and its adjacent coefficients and the MAP estimate original image wavelet coefficients from noisy coefficients, so as to achieve the purpose of denoising. The experiment results show that this method not only gets high peak signal-to-noise ratio( PSNR), but also obtains better visual quality.
作者 殷明 刘卫
出处 《电视技术》 北大核心 2011年第23期29-32,共4页 Video Engineering
基金 安徽省教育厅重点科研项目(J2010A282)
关键词 四元数小波变换 图像去噪 非高斯分布 统计模型 quaternion wavelet transform (QWT) image denoising non-Gaussian distribution statistical model
  • 相关文献

参考文献13

  • 1MALLAT S, HWANG W L . Singularity detection and processing with wavelets [ J ]. IEEE Transactions on Information Theory , 1992,38 ( 2 ) : 617-643.
  • 2DONOHO D L . Denoising by soft-thresholding [ J ]. IEEE Transactions on Information Theory, 1995,41 ( 3 ) :613-627.
  • 3CROUSE M S, NOWAK R D ,BARANIUK R G. Wavelet-based statistical signal processing using hidden Markov models[ J]. IEEE Transactions onSignal Processing, 1998,46(4 ) :886-902.
  • 4MIHCAK M K,KOZINTSEV I ,RAMCHANDRAN K,et al. Low-complexity image denoising based on statistical modeling of wavelet coefcients [ J ]. IEEE Signal Processing Lotters, 1999,6(12) :300-303.
  • 5CHANG S,YU B,VEqTERLI M. Adaptive wavelet thresholding for image denoising and compression[ J]. IEEE Transactions on Image Processing, 2000,9(9) : 1532-1546.
  • 6SENDUR L,SELESNICK I W. Bivariate shrinkage functions for wavelet- based denoising exploiting interscale dependency[ J ]. IEEE Transactions on Signal Processing 2002,20( 11 ) :2744-2756.
  • 7SENDUR L,SELESNICK I W. Bivariate shrinkage with local variance es- timation[ J]. IEEE Signal Processing Letters 2002,9(12) :438--441.
  • 8CORROCHANO E B. Multi-resolution image analysis using the quaterni- on wavelet transform [ J ]. The Journal of Numerical Algorithms, 2005,39 ( 1 ) :35-55.
  • 9CORROCHANO E B. The theory and use of quatemion wavelet transform [J]. The Journal of Mathematical Imaging and Vision,2006,24( 1 ) :19- 35.
  • 10SELESNICK i W, BARANIUK R G, KINGSBURY N C. The dual-tree complex wavelets transform [ J ]. IEEE Signal Processing Magazine, 2005,22(6) :123-151.

同被引文献48

  • 1李秀峰,苏兰海,荣慧芳,陈华.改进均值滤波算法及应用研究[J].微计算机信息,2008,24(1):235-236. 被引量:20
  • 2李秀敏,万里青,周拥军.基于MATLAB的DCT变换在JPEG图像压缩中的应用[J].电光与控制,2005,12(2):64-67. 被引量:17
  • 3ZHANG S,KARIM M.A new impulse detector for switching median fil-ters[J].IEEE Signal Processing Letters,2002,9(11):360-363.
  • 4JUSTEN L,RAMLAU R.A genaral framework for soft-shrinkage withapplications to blind deconvolution and wavelet denoising[J].Appliedand Computational Harmonic Analysis,2009,26(1):43-63.
  • 5钱伟新,刘瑞根,王婉丽.一种改进的自适应中值滤波算法[J].光学与光学技术,2011,9(4):35-38.
  • 6Sanyam A, Amitabh S, Alshay G. Undecimated wavelet based new threshold method,for speckle noise removal in ultrasound images [ C ]//2011 International Conference on Modeling Simulation and Control. Singapore :IACSIT Press, 2011, 10:137-145.
  • 7Pizurica A, Philips W, Lemahieu I, et al. A versatile wavelet domain noise filtration techniquefor medical imaging[ J ]. IEEE on Medical Imaging,2003,22(3 ) : 323-331.
  • 8Dai Y, Tang G, Wang T. Locally optimum detection of a noise model based on generalized Gaussian distribution [ C ]//Springer-Verlag Berlin Heidelberg 2011 ,Proc ICAIC ( 1 ), 2011 ( 1 ) :456-462.
  • 9贺长伟,刘英霞,任文杰,王欣.基于多级中值滤波的小波去噪方法[J].计算机应用,2007,27(9):2117-2119. 被引量:9
  • 10KROMMWEH J. Tetrolet transform:a new adaptive Haar wavelet algorithm for sparse image representation[J].{H}JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,2010,(4):364-374.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部