期刊文献+

mPEG-SS修饰对DHPM去折叠胰蛋白酶相对活性、热稳定性和动力学参数的影响 被引量:2

Effect of mPEG-SS modification on relative activity,thermal stability and kinetic parameters of DHPM unfolding trypsin
下载PDF
导出
摘要 采用ω-琥珀酰酯酸琥珀酰亚胺酯活化的α-甲氧基-聚乙二醇(mPEG-SS),修饰经动态高压微射流(Dynamic high-pressure microfluidization,DHPM)诱导的去折叠态(unfolding)胰蛋白酶,研究经mPEG-SS修饰后其相对活性、热稳定性、动力学(米氏常数Km、最大反应速率Vmax)变化情况。结果表明:经mPEG-SS修饰后,天然态和去折叠态胰蛋白酶的相对活性都没有明显改变;修饰后去折叠胰蛋白酶(DTP)较天然胰蛋白酶(NTP)的耐热性有明显提高,当温度为55、45℃条件下保温180min,NTP和DTP的相对活性分别提高了2%、7%和19%、30%;经mPEG-SS修饰后天然胰蛋白酶和去折叠胰蛋白酶的Km分别为4.67、3.24mg/mL,Vmax分别为0.042、0.034U/min,均比未经修饰的要小。修饰后去折叠胰蛋白酶(DTP)的Km比天然胰蛋白酶(NTP)小,表明修饰后去折叠胰蛋白酶比修饰后天然胰蛋白酶具有更强的与底物(酪蛋白)的亲和能力。 DHPM unfolding trypsin was modified by mPEG-SS. The relative activity,thermal stability and kinetic parameters(Km, Vmax)of trypsin were measured. Results showed that mPEG - SS modification did not change the relative activities of native and DHPM unfolding trypsin. mPEG-SS modification enhanced the thermal stability of unfolded trypsin more obviously than native trypsin. When incubated at 55℃ or incubated at 45℃ 180min,the values of mPEG-SS modification enhancing the relative activity of native and unfolded trypsin were 2%,7% and 19%,30% respectively. The Km and Vmax of native and unfolded trypsin modified by mPEG-SS were 4. 67,3. 24mg/mL and 0. 042,0. 034U/min respectively,which were lower than native and unfolded trypsin. The Km of unfolded trypsin modified by mPEG-SS was lower than native trypsin modified by mPEG-SS,which meant that the former would affine casein easier than later.
出处 《食品工业科技》 CAS CSCD 北大核心 2011年第12期103-105,109,共4页 Science and Technology of Food Industry
基金 国家自然科学基金项目(31060209) 国家重点实验室重点青年骨干研究基金(SKLF-QN-201101)
关键词 胰蛋白酶 mPEG-SS 相对活性 热稳定性 动力学参数 trypsin mPEG-SS relative activity thermal stability kinetic parameters
  • 相关文献

参考文献19

  • 1PILPEL N, NEZER I, Applebaum S W, et al. Mating- increases trypsin in female Drosophila hemolymph [ J ]. Insect Biochemistry and Molecular Biology ,2008,38 (3) :320-330.
  • 2ZHANG Ziding, HE Zhimin, HE Mingxia. Stabilization mechanism of MPEG modified trypsin based on thermal inactivation kinetic analysis and molecular modeling computation [ J ] . Journal of Molecular Catalysis B - Enzymatic, 2001 , 14 (4-6) :85-94.
  • 3TREETHAMMATHUROT B, OVARTLARNPORN C, Wungsintaweekul J, et al. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin [ J ] . International Journal of Pharmaceutics, 2008,357(1-2) :252-259.
  • 4LIU Chenguang, DESAI K G H, CHEN Xiguang, et al. Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan[ J] .Journal of Agricultural and Food Chemistry,2005,53 (5) : 1728-1733.
  • 5JARZEBSKI A B, SZY M ANSKA K, BRYJAK J, et al.Covalent immobilization of trypsin on to siliceous mesostructured cellular foams to obtain effective biocatalysts [ J~. Catalysis Today, 2007, 124(1-2) :2-10.
  • 6Vercet A, Burgos J, Crelier S, et al. Inactivation of proteases and lipases by ultrasound [ J ]. Innovative Food Science and Emerging Technologies, 2001 , 2 ( 2 ) : 139-150.
  • 7DUFOUR F, HERVE G, HAERTLE T. Hydrolysis of Beta- Laetoglnbulin by Thermolysin and Pepsin under High Hydrostatic - Pressure [ J ]. Biopolymers, 1995,35 ( 5 ) :475-483.
  • 8MAYNARD F, WEINGAND A, HAU J, et al. Effeet of high- pressure treatment on the tryptie hydrolysis of bovine beta- laetoglobulin AB [ J ]. International Dairy Journal, 1998,8 ( 2 ) : 125-133.
  • 9LIU Wei,ZHANG Zhaoqin, LIU Chengmei, et al.The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin [ J ]. Food Chemistry, 2010,123 ( 3 ) : 616-621.
  • 10BADRAN A M, JONES D E. Polyethylene glycols- tannins interaction in extracting enzymes[ J ] .Nature, 1965,206:622-624.

同被引文献28

  • 1朱建华,杨晓泉,熊犍.超声波技术在食品工业中的最新应用进展[J].酿酒,2005,32(2):54-57. 被引量:15
  • 2温燕梅,卢泽勤.磁性固定化胰蛋白酶的催化特性及应用的研究[J].生物技术,2005,15(4):56-58. 被引量:7
  • 3ZHANG Ziding, HE Zhimin, HE Mingxia. Stabilization mechanism of MPEG modified trypsin based on thermal inactivation kinetic analysis and molecular modeling computation [ J ] . Journal of Molecular Catalysis B : Enzymatic, 2001, 14 : 85-94.
  • 4TREETHARNMATHUROT B, OVARTLARNPORN C, WUNGSINTAWEEKUL J, et al. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin [ J ]. International Journal of Pharmaceutics, 2008,357 : 252 - 259.
  • 5LIU Chenguang, DESAI K G D, CHEN Xiguang, et al. Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan[ J].Journal fff Agriculture and Food Chemistry,2005,53:1728-1733.
  • 6JARZEBSK A B, SZYMANSKA K, BRYJAK J, et al. Covalent immobilization of trypsin on to siliceous mesostructured cellularfoams to obtain effective biocatalysts [ J ]. Catalysis Today, 2007,124:2-10.
  • 7ASHIE I N A, SIMPSON B K.Application of high hydrostatic pressure to control enzyme related fresh seafoodtexture deterioration [ J ] . Food Research International, 1996, 29: 569-575.
  • 8LIU Wei,ZHANG Zhaoqin,LIU Chengmei,et al.The effect of dynamic high-pressure microfuidization on theactivity, stability and conformation of trypsin [ J ]. Food Chemistry, 2010,123 ( 3 ) : 616-621.
  • 9Chou K C.A novel t,roach to predicting protein structural classes in a ( 20 - 1 ) - D amino acid composition space [ J J . Proteins, 1995,21:319-344.
  • 10WHITMORE L, WALLACE B A. DICHROWEB. An onlineserver for protein secondary structure analyses from circular dichroism spectro-scopic data[ J:.Nucleic Acids Research,2004, 32(2) :668-673.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部