摘要
针对全体用户采用同一推荐方法的传统推荐策略已不能满足当前电子商务企业和用户的要求.取而代之的是以用户为中心,在充分挖掘用户价值的基础上进行有针对性的信息推荐.将电子商务用户分层为新用户、高端用户和普通用户,提出了基于用户分层的电子商务智能信息推荐策略.针对用户的不同,设计有针对性的推荐方法,以实现企业与用户的双赢.实验结果表明,提出的推荐策略和推荐方法是有效的.
The traditional recommendation strategy that aimed at all users adopting the same recommendation method could not satisfy current E-commerce enterprises and users′ needs.The advanced one was that centered in users and implemented information recommendation on the base of the fully mined users′ value.This paper divided E-commerce users into new user,advanced user and ordinary user.It proposed the E-commerce intelligent recommendation strategy based on user segmentation.According to the difference of users,the paper designed different recommendation methods to guarantee enterprises and users′ profit.The experimental results indicate that the proposed recommendation strategy and the designed recommendation methods are efficient.
出处
《微电子学与计算机》
CSCD
北大核心
2011年第12期21-24,共4页
Microelectronics & Computer
基金
教育部人文社会科学研究项目基金(09yjc870032)
关键词
用户分层
协作过滤
马尔可夫决策过程
智能信息推荐
user segmentation
collaborative filtering
MDP
intelligent information recommendation