期刊文献+

改进粒子群算法的多峰值优化研究

Improved Particle Swarm Optimization for Multi-peak Problems
下载PDF
导出
摘要 粒子群优化算法对于多维函数的最优解搜索存在前期易陷入局部最优,后期收敛速度缓慢的问题.将改进的k-中心点聚类分析与PSO相结合提出了一种混合粒子群算法KM-PSO,用于多峰值问题的优化.在算法中,利用k-中心点聚类分析方法将粒子群划分成若干个子群,结合PSO的隐含并行搜索的优势增强了寻优性能.不仅增加了粒子间的信息交换,抑制了早熟收敛,还提高了全局寻优速度和计算精度.仿真实验结果表明,KM-PS0性能优于基本粒子群优化算法. The optimal solution for multi-dimensional search function,the Particle Swarm Optimization(PSO) easily trapped into local optimum,and convergence speed is slow later.The PSO algorithm employing improved k-medoids clustering analysis algorithm(KM-PSO) is proposed.In KM-PSO,the current particles is firstly divided into multi sub-population by improved k-medoids clustering,and PSO with the advantage of the implicit parallel search enhanced optimization performance.It not only exchanges more information among particle,restrains the tendency of premature,but also increases the converging rate and accuracy.Through the experimental results of both analysis and comparison to prove that KM-PSO is superior to original particle swarm optimization algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第12期59-62,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(50904032) 辽宁省教育厅科学技术研究项目(L2010177)
关键词 粒子群优化 K-中心点 聚类分析 Particle Swarm Optimization(PSO) k-medoids clustering analysis
  • 相关文献

参考文献7

二级参考文献22

  • 1孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 2冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版),2006,11(2):146-151. 被引量:22
  • 3黄继红.粒子群优化算法[EB].http://blog.sina.com.cn/s/blog_4b50b1010008ky.html,2007-03-25.
  • 4Coello Coello C A,Lechuga M S.MOPSO:a proposal for multiple objective particle swarm optimization[C]. IEEE Int Congress on Evolutionary Computation. Piscataway, NJ:IEEE Service Center,2002:1051-1056.
  • 5Shi Y C.Particle swarm optimization:developments,applications and resources[C].IEEE Int Congress on Evolutionary Computation.Piscataway, NJ:IEEE Service Center,2001:81-86.
  • 6Hu X,Shi Y, Eberhart R.Recent advances in particle swarm[C]: IEEE Int Congress on Evolutionary Computation. Piscataway, NJ:IEEE Service Center,2004:90-97.
  • 7Leandro dos Santos Coelho.A quantum particle swarm optimizer with chaotic mutation operator[J].Chaos, Soliton and Fractals, 2008(37):1409-1418.
  • 8曾谨言.量子力学导论[M].2版.北京:北京大学出版社,2006:135-162.
  • 9康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,2007,43(23):40-42. 被引量:19
  • 10崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91. 被引量:33

共引文献314

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部