期刊文献+

求解约束优化问题的多成员组合差分进化算法 被引量:2

Diversity composite differential evolution algorithm for constrained optimization problems
下载PDF
导出
摘要 针对约束优化问题,提出一种新颖的多成员组合差分进化算法。新算法为了充分利用种群中一个成员的信息,设计了基于组合测试向量产生策略的多成员机制。该机制针对种群中一个成员产生两组候选子成员,每组候选子成员都包括利用三种变异策略分别产生的三个不同的个体。为了利用种群中不可行解的信息,新算法还设计了一种新颖的分散机制。当对最优候选子个体与当前个体进行选择操作时,该机制分别利用概率SR和1-SR选择基于目标函数的比较准则和DEB比较准则,同时概率SR随着进化代数的增加逐渐减小到0。实验结果表明,新算法在三个最难优化的问题g02,g10和g13上具有明显优势。 Aiming at the problem of constrainted optimization,a novel diversity composite differential evolution algorithm was proposed.A multi-member mechanism based on composite trial vector generation strategies was designed by new algorithm to make full use of the information of a member in the population.Two groups of candidate submembers were generated from one member in the population,and each group of candidate submember included three different individual members which generated by three different trial vector generation strategies respectively.In addition,a novel dispersed mechanism was designed to utilize the information in infeasible solutions.When selecting occurred between the current member and optimum candidate submember,the comparison rules based on objective functions and DEB comparison rules were selected by using probability SR and 1-SR respectively.Simultaneously,SR was decreased gradually to 0 with the evolution.The experimental results indicated that the new algorithm exhibited obvious superiority in solving the most difficult optimization problems of g02,g10,and g13.
作者 郑建国 王翔
出处 《计算机集成制造系统》 EI CSCD 北大核心 2011年第11期2447-2456,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(70971020)~~
关键词 约束优化问题 优化 差分进化算法 constrained optimization problems optimization differential evolution algorithm
  • 相关文献

参考文献15

  • 1王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29. 被引量:116
  • 2公茂果,焦李成,杜海峰,马文萍.用于约束优化的人工免疫响应进化策略[J].计算机学报,2007,30(1):37-47. 被引量:16
  • 3王凌,黄付卓,李灵坡.基于混合双种群差分进化的电力系统经济负荷分配[J].控制与决策,2009,24(8):1156-1160. 被引量:20
  • 4STORN R. System design by constraint adaptation and differ ential evolution[J].IEEE Transactions on Evolutionary Com putation, 1999,3 (1) : 22-34.
  • 5LAMPINEN J. A constraint handling approach for the differ ential evolution algorithm[C]//Proceedings of the 2002 Con gress on Evolutionary Computation. Washington, D. C., USA.- IEEE, 2002 : 1468-1473.
  • 6LIN Y C, HWANG K S, WANG F S. Hybrid differential e- volution with multiplier updating method for nonlinear con strained optimization problems[C]//Proeeedings of the 2002 Congress on Evolutionary Computation. Washington, D. C. , USA : IEEE, 2002 : 872-877.
  • 7MEZURA-MONTES E, VELAZQUEZ REYES J, COEI.LO COELLO C A. Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimiza tion[C]//Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. New York, N. Y. , USA: ACM, 2005,225-232.
  • 8RUNARSSON T P, YAO X. Stochastic ranking for constrain ed evolutionary optimization[J]. IEEE Transactions on Evolu- tionary Computation,2000,4(3) :284-294.
  • 9PAN Quanke, SUGANTHAN P N, WANG Ling, et al. A differential evolution algorithm with self adapting strategy and control parameters[J]. Computers and Operations Research, 2011,38(1) :394-408.
  • 10WANG Yong, CAI Zixing, ZHANG Qingfu. Differential e- volution with composite trial vector generation strategies and control parameters[J].IEEE Transactions on Evolutionary Computation, 2011,15(1) :55-66.

二级参考文献20

共引文献145

同被引文献19

  • 1吴亮红,王耀南,周少武,袁小芳.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458. 被引量:47
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3STORN R,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous space[J].Journal of Global Optimization,1997,11(4):341-359.
  • 4QIN A K,HUANG V L,SUGANTHAN P N.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolution Computation,2009,13(2):398-417.
  • 5MALLIPEDDI R,SUGANTHAN P N,PAN Q K,et al.Differential evolution algorithm with ensemble of parameters and mutation strategies[J].Applied Soft Computing,2011,11(2):1679-1696.
  • 6WANG Y,CAI Z,ZHANG Q.Differential evolution with composite trial vector generation strategies and control parameters[J].IEEE Transactions on Evolutionary Computation,2011,15(1):55-66.
  • 7STORN R.On the usage of differential evolution for function optimization[C]//Proceedings of the 1996 Biennial Conference of the North American on Fuzzy Information Processing Society.Washington,D.C.,USA:IEEE,1996:519-523.
  • 8R(O)NKK(O)NEN J,KUKKONEN S,PRICE K V.Real-parameter optimization with differential evolution[C]//Proceedings of IEEE Congress on Evolutionary Computation.New Work,N.Y.,USA:IEEE,2005:506-513.
  • 9G(A)MPERLE R,M(U)LLER S D,KOUMOUTSAKOS P.A parameter study for differential evolution[C]// Proceedings of International Conference on Advances in Intelligent Systems,Fuzzy Systems,Evolutionary Computation.Interlaken,Switzerland:WSEAS Press,2002:293-298.
  • 10NOMAN N,IBA H.Accelerating differential evolution using an adaptive local search[J].IEEE Transaction on Evolutionary Computation,2008,12(1):107-125.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部