期刊文献+

采用桌面视觉系统实现深度测量的方法 被引量:2

Depth Measurement Based on Desktop Vision System
原文传递
导出
摘要 提出了一种基于桌面视觉系统(DVS)的深度测量方法,并推导了相关的立体图像对校正方法和计算公式,主要包括:几何畸变校正、中心投影的重投影变换、缩放变换、竖直平移变换以及亮度和颜色校正等。通过重投影变换可以使内参数彼此不一致的两个会聚式相机拍摄得到的立体图像对,变换为平行式摆放且具有相同内参数(除几何畸变系数外)的两相机拍摄得到的立体图像对。该方法首先对桌面视觉系统拍摄的立体图像对进行校正处理,使其变换为理想的立体图像对;然后,对校正后的立体图像对进行立体匹配,得到各对同名点的水平视差;最后,基于水平视差和摄像机标定的参数,应用三角测量法求空间点的深度信息。实验结果表明,测量方法的相对误差在0.31%以内。 An effective depth measurement method based on desktop vision system (DVS) with high precision is proposed. For this purpose, rectification techniques for stereo image pairs are proposed and derived, which mainly consist of geometric distortion correction, reprojection transformation by central projection, zooming transformation, vertical translation transformation and brightness and color correction. The reprojection transformation can change the stereo image pairs captured by a binocular converged camera system with different camera intrinsic parameters into those captured by binocular parallel camera system with the same camera intrinsic parameters (except geometric distortion coefficient). For depth measurement, firstly, the stereo image pairs captured by a DVS are rectified and corrected into perfect ones. And then, horizontal parallax of the corresponding points of interest is gotten by stereo matching. Finally, the depth information of the spatial point of interest is calculated based on horizontal parallax and the parameters obtained by camera calibration. Experimental results show that the proposed depth measurement method is simple and practical, and the relative error is demonstrated for depth measurement of the near distant objects to be no more than 0.31%.
出处 《激光与光电子学进展》 CSCD 北大核心 2011年第12期83-91,共9页 Laser & Optoelectronics Progress
基金 四川省科技厅支撑计划(2008FZ0003) 国家自然科学基金(60877004)资助课题
关键词 三维测量 立体图像对校正 重投影变换 缩放变换 竖直平移变换 颜色校正 three-dimensional measurement stereo image pair rectification reprojection transformation zooming transformation vertical translation transformation color correction
  • 相关文献

参考文献18

  • 1Zhengyou Zhang.A flexible new technique for camera calibration[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2000,22(11): 1330-1334.
  • 2Zhengyou Zhang.Flexible camera calibration by viewing a plane from unknown orientations[C].Proceedings of the Seventh IEEE International Conference on Computer Vision,1999,1: 666-673.
  • 3Wang Feng,Dai Shuguang.3-D reconstruction based on binocular stereo vision[C].SPIE,2009,7283: 728331.
  • 4Andrea Fusiello,Emanuele Trucco,Alessandro Verri.A compact algorithm for rectification of stereo pairs[J].Machine Vision and Applications,2000,12(1): 16-22.
  • 5Kazuyuki Miyazawa,Takafumi Aoki.A robot-based 3D body scanning system using passive stereo vision[C].15th IEEE International Conference on Image Processing,2008,305-308.
  • 6Jin Zhou,Baoxin Li.Image rectification for stereoscopic visualization[J].J.Opt.Soc.Am.A,2008,25(11): 2721-2733.
  • 7曾吉勇,苏显渝.一种无相机标定的立体图像对校正新方法[J].光学学报,2004,24(5):628-632. 被引量:16
  • 8Feng Shao,Mei Yu,Gangyi Jiang.Dominant color extraction based color correction for multi-view images[J].Chin.Opt.Lett.,2007,5(8): 449-451.
  • 9Yunfang Zhu.A new method of brightness correction for multi-view images[C].IEEE International Conference on Intelligent Computing and Intelligent Systems,2009,4: 547-551.
  • 10Andrew Woods,Tom Docherty,Rolf Koch.Image distortions in stereoscopic video systems[C].SPIE,1993,1915: 36-48.

二级参考文献42

共引文献63

同被引文献30

  • 1苏显渝,李继陶.信息光学[M].北京:科学出版社,2002.
  • 2R Hartly, A Zisserman. Multiple View Geometry in Computel / Vision (2nd Edition) [M]. Cambrige: Cambridge Universitt ! Press, 2004.
  • 3C Geyer, K Daniilidis. Catadioptric projective geometry [J]. International J Computer Vision, 2001, 45(3) 223-243.
  • 4C Mei, P Rivis. Single view point omnidirectional camera calibration from planar grids [C]. IEEE International Conference on Robotics and Automation, 2007. 3945--3950.
  • 5X Ying, Z Hu. Catadioptric camera calibration using geometric invariants E J- IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10) 1260--1271.
  • 6J P Barreto, H Araujo. Geometric properties of central catadioptric line images and their application in calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1327--1333.
  • 7X Ying, H Zha. Identical projective geometric properties of central catadioptric line images and sphere images with applications to calibration [J]. International Journal of Computer Vision, 2008, 78(1): 89--105.
  • 8F Espuny, J I B Gil. Generic self-calibration of central cameras from two rotational flows [J]. International Journal of Computer Vision, 2011, 91(2) 131--145.
  • 9Z Zhang. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11) : 1330--1334.
  • 10R I Hartley. Self-calibration of stationary cameras[J] International Journal of Computer Vision, 1997, 22(1) : 5--23.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部