期刊文献+

混合型导光的全固态光子晶体光纤的特性分析 被引量:2

Analysis on the Properties of All-Solid Photonic Crystal Fiber with Micro-Structured Core
原文传递
导出
摘要 通过在全固态光子带隙光纤的纤芯中心处掺入高折射率锗,形成具有微结构芯的混合型导光的全固态光子晶体光纤。采用全矢量有限元法,对光纤的导光机制、模场、损耗、色散等特性进行了数值分析。结果表明,中心高折射率棒的半径从0开始增大,小于包层高折射率棒的半径时,基模有效折射率由靠近带隙下边界处开始向上移动,导光机制由带隙效应导光向混合型导光转变,损耗随之降低。在短波处,全内反射效应占主导,带隙边缘对损耗的影响减小,损耗曲线逐渐表现出随波长单调递增的特性。长波处,导光机制以带隙效应为主,损耗曲线整体下移。通过改变中心棒的大小,可以灵活调节光纤的零色散波长。研究结果表明,当中心棒的半径为0.5μm时,零色散波长向短波方向移动30nm;半径为1.2μm时,零色散波长向长波方向移动230nm,调整带宽达到260nm。 All-solid hybrid photonic crystal fiber with micro-structured core is proposed. The micro-structured core is consisted of pure silica and a high refractive index germanium-doped rod. Using the full-vector finite-element method, the fiber's guiding mechanism, mode field, confinement loss and dispersion are investigated. Simulation results demonstrate that with the increment of central high refractive index rod's diameter from 0μm to less than cladding high-index rod, the fundamental model's effective index moves up from closing to the bandgapr s lower boundary. Furthermore, the guiding mechanism is transformed from bandgap effect into hybrid mechanism and the confinement loss is reduced. In the short wavelength, the guiding mechanism is dominated by the totally international reflection mechanism, the bandgap edge's influence on loss reduces and the loss decreases monotonically with the decrement of wavelength. But in the long wavelength, light is guided by the bandgap effect and the loss curve moves down integrally. By adjusting the radius of the central high refractive index rod, zero dispersion wavelength of the fiber can be tailored flexibly. When the radius of the central rod is set to 0.5μm, the zero dispersion wavelength shifts to shorter wavelength, about 30 nm away from the original value. When the radius is 1.2μm, the zero dispersion wavelength can be shifted to longer wavelength, about 230 nm away. The tunable band-width is up to 260 nm.
出处 《中国激光》 EI CAS CSCD 北大核心 2011年第12期111-116,共6页 Chinese Journal of Lasers
基金 国家973计划(2010CB821604) 国家自然科学基金重点项目(60637010) 河北省自然科学基金(F2010001291) 河北省高等学校科学技术研究指导项目(Z2010336)资助课题
关键词 光纤光学 全固态光子晶体光纤 有限元法 限制损耗 色散 微结构芯 fiber optics all-solid photonic crystal fiber finite-element method confinement loss dispersion micro-structured core
  • 相关文献

参考文献22

  • 1J. Broeng, D. Mogilenstev, S. E. Barkou et al.. Photonic crystal fibers: a new class of optical waveguides[J]. Opt. Fiber Technol., 1999, 5: 305~330.
  • 2T. A. Birks, J. C. Knight, B. J. Mangan et al.. Photonic crystal fibers: an endless variety[C]. IEICE Trans. Electron., 2001, E84-C: 585~592.
  • 3J. C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549.
  • 4王艳梅,薛文瑞,张文梅.改进的八重准光子晶体光纤的色散特性研究[J].光学学报,2009,29(6):1644-1648. 被引量:4
  • 5李羽赫,范万德,盛秋琴.双芯准晶格光子晶体光纤的色散特性[J].中国激光,2011,38(2):159-163. 被引量:5
  • 6J. C. Knight, J. Broeng, T. A. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476~1478.
  • 7R. F. Cregan, B. J. Mangan, J. C. Knight et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537~1539.
  • 8T. P. Hansen, J. Broeng. Solid-core photonic bandgap fiber with large anomalous dispersion[C]. OFC, 2003, 2: 700~701.
  • 9K. Saitoh, N. A. Mortensen, M. Koshiba. Air-core photonic band-gap fibers: the impact of surface modes[J]. Opt. Express, 2004, 12(3): 394~400.
  • 10J. A. West, C. M. Smith, N. F. Borrelli et al.. Surface modes in air-core photonic band-gap fibers[J]. Opt. Express, 2004, 12(8): 1485~1496.

二级参考文献97

共引文献37

同被引文献27

  • 1陈卫国,娄淑琴,王立文,李宏雷,郭铁英,简水生.光子晶体光纤长周期光栅的特性[J].中国激光,2009,36(3):699-704. 被引量:6
  • 2胡永金,汪井源,文科.高双折射光子晶体光纤用于温度传感的研究[J].军事通信技术,2008,29(2):35-37. 被引量:1
  • 3张虎,王秋国,杨伯君.带隙型光子晶体光纤的研究进展[J].半导体光电,2007,28(3):301-305. 被引量:8
  • 4C. K. Chen, A. Laronche, G. Bouwmans et al.. Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index[J]. Opt. Express, 2008, 16(13):9645-9653.
  • 5C. Wu, H. Y. Fu, K. K. Qureshi et al.. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber[J]. Opt. Lett., 2011, 36(3): 412-414.
  • 6H. K. Gahir, D. Khanna. Design and development of a temperature compensated fiber optic polarimetric pressure sensor based on photonie crystal fiber at 1550 nm[J]. Appl. Opt. , 2007, 46(8): 1184-1189.
  • 7H. Y. Fu, H. Y. Tam, L. Y. Shao. Pressure sensor realized with polarization maintaining photonic crystal fiber-based Sagnac interferometer[J]. Appl. Opt. , 2008, 47(15): 2835-2839.
  • 8H. Y. Fu, A. C. L. Wong, P. A. Childs et al.. Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors [J]. Opt. Express, 2009, 17 (21): 18501-18512.
  • 9G B Ren, P Shum, L R Zhang, et al: Low-loss all-solid photonic bandgapfiber[J]. Opt Lett, 2001, 32(9): 1023-1025.
  • 10R F Cregan, B J Mangan, J C Knight, et al: Single-mode photonic band gap guidance of light in air [J]. Science, 1999, 285 (5433) : 1537-1539.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部