期刊文献+

一种分段线性边界条件连续体振动响应求解方法 被引量:3

An Approach for Vibration Analysis of Continuous Systems with Piecewise-linear Boundary Conditions
原文传递
导出
摘要 基于振型转换的思想,提出了一种求解分段线性边界条件,以及可将其他非线性边界条件转化为分段线性边界条件的连续体振动问题的方法———相对振型转换法(Relative Mode Transfer Method,RMTM),用该法研究了端点带双阻挡悬臂梁的非线性振动。利用相对振型转换法处理了梁的接触振型与非接触振型的振动转换,与Moon于1983年所提方法进行了相互印证,通过时程图与幅频响应图,将两种方法得到的梁端点响应的结果进行对比,证实了相对振型转换法的正确性;并研究了一类边界条件梁的非线性振动,通过梁端点的幅值响应的分岔图,讨论了振型之间的耦合、模态阻尼及端点弹簧刚度对梁端点响应的影响。结果表明,弹簧刚度、阻尼、激励力等不同的参数组合可以导致梁的单周期运动、多周期运动以及混沌运动,得到了上述复杂非线性响应在激励力频域上存在的区域。 A new approach named the relative mode transfer method(RMTM) is developed in this study to solve the vibration problem of continuous systems with piecewise-linear boundary conditions or other nonlinear boundary conditions which can be transformed into piecewise-linear boundary conditions based on the mode transfer principle.The nonlinear vibration of a cantilever with double stops on the tip is investigated.The transfer between the contact states and non-contact states is dealt with using the new method,and its validity is proved by contrasting the results of a case studied both by the new approach and Moon's method which was proposed in 1983.The problem represented by the case is studied through the bifurcation response of the cantilever tip,and a discussion of the effects of the coupling between modes,modal damping,and stop stiffness.It is found that different combinations of the parameters of stop stiffness,damping ratio,driving force,etc.,can lead to period-one,period-n and chaotic vibration,and the area of complex nonlinear response in the range of the driving force is obtained.
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第12期2236-2243,共8页 Acta Aeronautica et Astronautica Sinica
基金 "微小型航天器系统技术"长江学者创新团队发展计划(IRT0520)~~
关键词 模态分析 分段线性边界条件 非线性振动 混沌运动 modal analysis beam piecewise-linear boundary condition nonlinear vibration chaotic vibration
  • 相关文献

参考文献21

  • 1Bindemann A C, Ferri A A. Large amplitude vibration of a beam restrained by a non-linear sleeve joint[J]. Journal of Sound and Vibration, 1994, 184(1) : 19-34.
  • 2Ouyang H, Oldfield M J, Mottershead J E. Experimental and theoretical studies of a bolted joint excited by a tot sional dynamic load[J]. International Journal of Mechani- cal Sciences, 2006, 48(12): 1447-1455.
  • 3Carney K, Yunis Y, Smith K, et al. Nonlinear dynamic behavior in the cassini spacecraft modal survey[C]//15th International Modal Analysis Conference (IMAC). 1997 : 811-817.
  • 4Bingham J G, Folkman S L. Measured influence of gravity on the dynamic behavior of a truss using pinned ioints[R]. AIAA 1043-1053, 1996.
  • 5Ingham M D, Crawley E F. Mierodynamic characteriza- tion of modal parameters for a deployable space structure [J]. AIAAJournal, 2001, 39(2): 331-338.
  • 6Folkman S L, Rowsell E A, Ferney G D. Influence of pinned joints on damping and dynamic behavior of a truss [J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6) : 1398-1403.
  • 7Okuizumi N, Natori M C. Nonlinear vibration of a satel lite truss structure with gaps[C]//45th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2004: 19-22.
  • 8Wagg D J, Bishop S R. Application of non-smooth model- ling of a flexible impacting beam[J]. Journal of Sound and Vibration, 2002, 256(5): 803-820.
  • 9Vyasarayani C P, McPhee J, Birkett S. Modeling impacts between a continuous system and a rigid obstacle using co efficient of restitution[J]. Journal of Applied Mechanics, 2010, 77(2): 021008.
  • 10Turner J A. Non-linear vibration of a beam with cantile ver-Hertzian contact boundary condition [J]. Journal of Sound and Vibration, 2004, 275(1-2): 177-191.

同被引文献51

  • 1Ervin E K, Wickert J A. Repetitive impact response of a beam structure subjected to harmonic base excitation [ J ]. Journal of Sound and Vibration, 2007, 307( 1 -2) : 2 - 19.
  • 2Earney K. Nonlinear dynamic behavior in the cassini spacecraft modal survey [R]. N20050180492, JPL, NASA, 2005.
  • 3Wagg D J, Bishop S R. Application of non-smooth modelling of a flexible impacting beam [J]. Journal of Sound and Vibration, 2002, 256 (5) : 803 - 820.
  • 4Vyasarayani C P, McPhee J, Birkett S. Modeling impacts between a continuous system and a rigid obstacle using coefficient of restitution [ J ]. Journal of Applied Mechanics, 2010, 77(2) : 021008.1 -021008.7.
  • 5Tsai H C, Wu M K. Methods to compute dynamic response of a cantilever with a stop to limit motion [ J ]. Computers & Structures, 1996, 58(5): 859-867.
  • 6Turner J A. Non-linear vibration of a beam with cantilever- Hertzian contact boundary condition [ J ]. Journal of Sound and Vibration, 2004, 275(1 -2): 177- 191.
  • 7Wang C, Kim J. New analysis method for A thin beam impacting against a stop based on the full continuous model [J]. Journal of Sound and Vibration, 1996, 191(5) : 809 - 823.
  • 8Brake M R. A hybrid approach for the modal analysis of continuous systems with discrete piecewise-linear constraints [J]. Journal of Sound and Vibration, 2011,330(13) : 3196 - 3221.
  • 9Ervin E K, Wickert J A. Experiments on a beam-rigid body structure repetitively impacting a rod [ J ]. Nonlinear Dynamics, 2007, 50 (3) : 701 - 716.
  • 10Shih P J, Shih W P. Impact dynamics of vibratory microprobe for microcoordinate measurement [ J ]. Journal of Applied Physics, 2007, 101(11): 113516.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部