期刊文献+

非奇异Hermite矩阵流形上的Jacobi场 被引量:4

Jacobi Fields on the Manifold of Nonsingular Hermite Matrices
下载PDF
导出
摘要 讨论了非奇异Hermite矩阵流形H(n)的几何结构.定义其上的黎曼度量,给出了流形H(n)上的α-对偶联络和α-曲率张量.从微分几何的角度,研究流形H(n)上的Jacobi场,进而考虑测地线的收敛性,并举例说明结果. In this paper, the manifold geometric structures of nonsingular Hermite matrices H(n) are considered. First, we define α- Riemannian metric and introduce the dual α-connections and the α-curvature tensors. Then, the Jacobi fields on manifold H(n) have been considered to investigate the instability of the geodesics in view of differential geometry. Moreover, some examples are given to illustrate our results.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第11期1375-1378,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(10871218 10932002)
关键词 HERMITE矩阵 微分几何 JACOBI场 Hermite matrices differential geometry Jacobi field
  • 相关文献

参考文献6

  • 1Amari S. Differential geometrical methods in statistics [M]. Berling Springer-Verlag, 1985.
  • 2Amari S, Nagaoka H. Methods of information geometry [M]. Oxford.. Oxford University Press, 2000.
  • 3Cafaro C, All S A. Jacobi fields on statistical manifolds of negative curvature [J]. Physica D, 2007, 234 ( 1 ) : 70 - 80.
  • 4Casetti L, Pettini M, Cohen E G D. Geometric approach to Hamiltonian dynamics and statistical mechanics[J]. Physics Reports, 2000, 337(3):237- 341.
  • 5Ohara A,Kitamori T. Geometric structures of stable state feedback systems [J]. IEEE Transactions on Automatic Control, 1993,38 : 1579 - 1583.
  • 6Peter W, Petz D, Anda A. On the curvature of a certain Riemannian space of matrices [J]. Infinite Dimensional and Analysis, 2000,3(2) : 199 - 212.

同被引文献7

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部