期刊文献+

基于磁力场与速度场协同的高效微通道磁泳分离 被引量:4

原文传递
导出
摘要 磁泳是实现生化分离的重要手段之一.根据微通道内磁珠运动基本方程导出了影响磁泳分离效率的新因素,即磁场力矢量与流体速度矢量的夹角,提出改善磁力场与流场的协同性是提高磁泳分离效率的重要途径之一,并基于此设计了T型结构微通道磁泳分离芯片.通过建立磁珠运动的二维动力学模型,并运用有限元和龙格库塔法,对微通道内的磁泳分离效率进行了数值模拟研究.结果发现:相同条件下T型微通道分离效率较普通平直微通道明显提高;在高流速下直通道对小粒径磁珠的磁泳分离失效时,T型微通道仍能实现高效分离.进一步分析表明,T型微通道内分离效率提高的本质在于磁力场与流场的协同作用使得磁珠产生更大的偏转速度,从而增加了分离效率.研究结果对磁泳芯片优化设计具有理论指导意义.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2011年第12期1620-1627,共8页 Scientia Sinica(Technologica)
基金 国家杰出青年科学基金(批准号:50925624) 国家重点基础研究发展计划(批准号:2012GB720404) 上海市优秀学术带头人计划(批准号:11XD1403100)资助
  • 相关文献

参考文献21

  • 1Pamme N. Magnetism and microfluidics. Lab Chip, 2006, 6:24-38.
  • 2Gijs M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid Nanofluid, 2004, 1(1): 22-40.
  • 3Lim J K, Lanni C, Evarts E R, et al. Magnetophoresis of nanoparticles. ACS NANO, 2011, 5(1 ): 217-226.
  • 4Teste B, Malloggi F, Gassner A L, et al. Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient. Lab Chip, 2011, 11:833-840.
  • 5Bu M Q, Christensen T B, Smistrup K, et al. Characterization of a microfluidic magnetic bead separator for high-throughput applications. Sens Actuators A, 2008, 145-146:430-436.
  • 6Choi J W, Oh K W, Thomas J H, et al. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip, 2002, 2:27-30.
  • 7Smistrup K, Hansen O, Bruus H, et al. Magnetic separation in microfluidic systems using microfabricated electromagnets-experiments and simulations. J Magn Magn Mater, 2005, 293(1): 597-604.
  • 8Ramadan Q, Samper V, Poenar D, et al. Magnetic-based microfluidic platform for biomolecular separation. Biomed Microdevices, 2006, 8(2): 151-158.
  • 9Guo S, Zuo C, Huang W, et al. Response of super-paramagnetic beads in microfluidic devices with integrated magnetic microcolumns. Microelectron Eng, 2006, 83(4-9): 1655-1659.
  • 10王聿佶,陈翔,曹慧敏,金庆辉,赵建龙.一种新型微流体DNA提取芯片的研究[J].微纳电子技术,2007,44(9):853-856. 被引量:7

二级参考文献8

  • 1王彬,陈翔,许宝建,金庆辉,赵建龙,徐元森.基于SU-8负胶的微流体器件的制作及研究[J].功能材料与器件学报,2006,12(3):215-219. 被引量:5
  • 2AUROUX P A,IOSSIFIDIS D,REYES D R,et al.Micro total analysis systems 2 analytical standard operations and applications.Anal Chem,2002,74:2637-2652.
  • 3SUN K,YAMAGUCHI A,ISHIDA Y,et al.A healer-integrated transparent micrechannel chip for continuous-flow PCR[J].Sensors and Actuators B,2002,84:283-289.
  • 4YAN W,DU L,WANG J,et al.Simulation and experimental study of PCR chip based on silicon[J].Sensors and Actuators B,2005,108:695-699.
  • 5KIM J A,LEE J Y,SEONG S,et al.Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip[J].Biochemical Engineering Journal,2006,29:91-97.
  • 6LEE T M H,CARLES M C,HSING I M.Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection[J].Lab Chip 2003,3:100-105.
  • 7TIAN H,HUHMER A F R,LANDERS J P.Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format[J].Analytical Biochemistry,2000,283:175-191.
  • 8DUFFY D C,MCDONALD J C,SCHUELLER O J A,et al.Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)[J].Anal Chem,1998,70:4974-4984.

共引文献6

同被引文献22

  • 1李强,宣益民,王健.磁流体粘度的实验研究[J].工程热物理学报,2005,26(5):859-861. 被引量:7
  • 2Gijs MAM, Laeharme F, Lehmann U. Microfluidic applications . of magnetic particles for biological analysis and catalysis [ J ]. Chemical Reviews, 2010, 110:1518 - 1563.
  • 3Nilsson J, Evander M, Hammarstrom B, et al. Review of cell and particle trapping in microfluidic systems [ J ]. Analytica Chimica Acta, 2009, 649:141 -157.
  • 4Cao Quanliang, Han Xiaotao, Li Liang. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms [J]. Lab on a Chip, 2014, 14:2762-2777.
  • 5Bu MQ, Christensen TB, Smistrup K, et al. Characterization of a microfluidic magnetic bead separator for high-throughput applications [ J]. Sensors and Actuators A, 2008, 145 -146: 430 - 436.
  • 6Tam MD, Peyman SA, Robert D, et al. The importance of particle type selection and temperature control for on-chip free- flow magnetophoresis [ J ]. Journal of Magnetism and Magnetic Materials, 2009, 321 : 4115 - 4122.
  • 7Zeng J, Deng YX, Vedantam P, et al. Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets [ J]. Journal of Magnetism and Magnetic Materials, 2013, 346:118 -123.
  • 8Pamme N, Manz A. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates [ J ]. Analytical Chemistry, 2004, 76 : 7250 - 7256.
  • 9Yamada M, Nakashima M, Seki M. Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel [ J]. Analytical Chemistry, 2004, 76:5465-5471.
  • 10Liu Y, Hartono D, Lira K-M. Cell separation and transportation between two miscible fluid streams using ultrasound [ J ]. Biomicrofluidics, 2012, 6: 012802.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部