期刊文献+

柴油轿车NEDC循环的颗粒排放特性 被引量:2

Exhaust Particle Emissions from a Diesel Car under NEDC Cycle
下载PDF
导出
摘要 以一台轻型柴油轿车为试验样车,采用颗粒数量及粒径分析仪对轿车NEDC循环的排气颗粒进行测试,研究其排气颗粒数量、粒径分布和几何平均粒径.结果表明:车辆加速阶段,总颗粒数密度增大且出现峰值;车辆减速阶段,总颗粒数密度先出现一个波峰,然后急剧下降,这在EUDC循环最后期的减速区域尤为明显.UDC首个循环单元的初始怠速工况下,核态颗粒数密度高于聚集态颗粒.暖机后的UDC和EUDC循环单元内,等速工况的聚集态颗粒数密度普遍高于核态颗粒.加速阶段,聚集态颗粒和核态颗粒数密度均有所升高.减速阶段,聚集态颗粒数密度降低,但核态颗粒数密度却有所升高且占主导地位,其数量分数大都在80%以上.UDC首个循环单元的单位里程颗粒数量排放最高,其余3个市区循环基本相同,而EUDC循环的单位里程排放颗粒数则明显低于UDC循环.NEDC每个循环单元的颗粒粒径均呈准正态分布,峰值粒径都出现在50~60,nm范围内.整个NEDC循环的颗粒几何平均粒径,最大为怠速工况时的55,nm,最小为减速工况时的37,nm. Particle number concentration, size distribution and geometric average diameter of a diesel passenger car under the New European Driving Cycle (NEDC)test were studied using an EEPS particle size analyzer. Experimental results show that the total particle number concentration increases and gives a peak value during accelerating condition, while it gives a peak value firstly and then decreases sharply during decelerating condition. The latter is especially obvious during the last decelerating condition in the Extra Urban Driving Cycle (EUDC) unit. The number concentration of nucleation mode particles is higher than accumulation mode particles during initial idle speed condition in the first unit of the Urban Driving Cycle (UDC).After warm-up, the number concentration of accumulation mode particles is generally higher than nucleation mode particles during constant velocity condition in the EUDC and other three UDC units. Both nucleation and accumulation mode particles ascend when accelerating. The number concentration of nucleation mode particle increases, and dominates the total particle number. Its proportion is over 80% when decelerating. The exhaust particle number of unit distance in the first UDC unit is highest, and there is no obvious difference among the other three UDC units. The exhaust particle number of unit distance in the EUDC unit is obviously lower than that of the UDC units. Particle size distribution in each NEDC unit appears quasi-normal distribution, and the peak value of particle number in each unit ranges from 50 nm to 60 nm in particle diameter. The maximum geometric average particle size is 55 nm when idling, while the minimum is 37 nm when decelerating.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2011年第6期563-568,共6页 Transactions of Csice
基金 国家自然科学基金资助项目(50906062) 国家高技术研究发展计划(863计划)资助项目(2008AA11A169)
关键词 柴油轿车 排放 颗粒数量 粒径分布 NEDC diesel car emission particle number size distribution NEDC
  • 相关文献

参考文献18

  • 1Johnson T V. Diesel emission control in review [C]. SAE Paper 2006-01-0030, 2006.
  • 2Kagawa J. Health effects of diesel exhaust emissions - a mixture of air pollutants of worldwide concern [J]. Toxi- cology, 2002, 181(1): 349-353.
  • 3Kittelson D B. Engines and nanoparticles : A review [J]. Journal of Aerosol Science, 1998, 29 (5) : 575-588.
  • 4Alfoldy B, Giechaskiel B, Hofmann W, et al. Sizedistribution dependent lung deposition of diesel exhaust particles[J]. Journal of Aerosol Science, 2009, 40 (8) : 652-663.
  • 5Benajes J, Novella R, Arthozoul S, et al. Particle size distribution measurements from early to late injection timing low temperature combustion in a heavy duty die- sel engine [C]. SAE Paper 2010-01-1121, 2010.
  • 6Raux S, Forti L, Barbusse S, et al. Impact of engine technology on particulate emissions, size distribution and composition heavy duty diesel study [C]. SAE Paper 2005-01-0190, 2005.
  • 7Tan Piqiang, Hu Zhiyuan, Deng Kangyao, et al. Particulate matter emission modeling based on soot and SOF from direct injection diesel engines [J]. Energy Conversion and Management, 2007, 48 (2) : 510-518.
  • 8Hall D E, Stradling R J, Zemroch P J, et al. Measure- ment of the number and size distribution of particle emissions from heavy duty engines [C]. SAE Paper 2000-01- 2000, 2000.
  • 9Neer A, Koylu U O. Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine [J]. Combustion and Flame, 2006, 146(1) : 142-154.
  • 10Ivanisin M, Hausberger S. Experimental study on parti- cle number emissions of modem vehicle engines[C]. SAE Paper 2005-01-0191, 2005.

同被引文献19

  • 1程莺,罗禹贡,李克强,连小珉.前向式混合动力系统模型中控制器建模与仿真[J].汽车技术,2005(4):15-19. 被引量:8
  • 2Bihr, B.. Low Carbon Powertrains. Trends and Technologies[J]. IMechE Conference Cost Effec- tive Low Carbon Powertrains for Future Vehi- cles'. 607, Nov, 2006.
  • 3Kosuke Fujimoto et al. Development of ILSAC GF -5 0W- 20 Fuel Economy Gasoline Engine Oil [J]. SAE International, 2012, ( 1 ) : 1614.
  • 4Brent Dohner et al. Development of Novel Fric- tion Modifier Technology Part 2: Vehicle Testing [J]. JSAE20119157.
  • 5Riaz A Mufti and Martin Priest. Experimental and Theoretical Evaluation of Simultaneous Piston Assembly [J]. Valve Train and Engine Bearing Friction in a Fired Engine. September 12 - 16, 2005, Washington, D. C. , USA.
  • 6Trapy JD, Damiral P. An Investigation of Lubri- cating System Warm -up for the Improvement of Cold Start Efficiency and Emissions of SI automo- tive engines [J]. SAE technical paper 902089 ; 1990.
  • 7Barlow TJ, et al. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehi- cle Emissions [M]. IHS ; 2009. ISBN 0968 - 4093.
  • 8Andrews G, et al. The Use of a Water/lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Con- sumption and CO2 Emissions during Cold Start [J]. SAE. 2007-01-2067.
  • 9Barlow TJ, et al. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehi- cle Emissions [J]. IHS; 2009. ISBN 0968 - 4093.
  • 10Shayler P, Leong D, Murphy M. Contributions to Engine Friction during Cold, Low Speed Run- ning and the Dependence on Oil Viscosity [J]. SAE technical paper,2005 - O1 - 1654.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部