期刊文献+

Super congruences and Euler numbers 被引量:10

Super congruences and Euler numbers
原文传递
导出
摘要 Let p 〉 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that ∑k=0^p-1(k^2k/2k)≡(-1)^(p-1)/2-p^2Ep-3(modp^3) ∑k=1^(p-1)/2(k^2k)/k≡(-1)^(p+1)/2 8/3pEp-3(mod p^2),∑k=0^(p-1)/2(k^2k)^2/16k≡(-1)^(p-1)/2+p^2Ep-3(mod p^3),where E0, E1, E2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π-2 and the constant K := ∑k=1^∞(k/3)/k^2 (with (-) the Jacobi symbol), two of which are ∑k=1^∞(10k-3)8k/k2(k^2k)^2(k^3k)=π^2/2and ∑k=1^∞(15k-4)(-27)^k-1/k^3(k^2k)^2(k^3k)=K. Let p>3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that∑(p-1)(k=0)(2k·k)/2k ≡(-1)(p-1)/2-p2Ep-3(mod p3), ∑(p-1)/2 k=1 (2k·k) k ≡ (-1)(p+1)/2 8/3 pEp-3(mod p2),∑(p-1)/2 k=0 (2k·k)2/16k ≡ (-1)(p-1)/2+p2Ep-3(mod p3), where E0, E1, E2, . . . are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π-2 and the constant K:=∑∞ k=1(k/3)/k2 (with (一) the Jacobi symbol), two of which are∑∞ k=1 (10k 3)8k/k3(2k·k)2(3k·k)= π2/2 and ∑∞ k=1 (15k-4)(-27)k-1/k3(2k·k)2(3k·k)=K.
作者 SUN Zhi-Wei
出处 《Science China Mathematics》 SCIE 2011年第12期2509-2535,共27页 中国科学:数学(英文版)
基金 supported by the National Natural Science Foundation of China(GrantNo.10871087) the Overseas Cooperation Fund of China(Grant No.10928101)
关键词 central binomial coefficients super congruences Euler numbers 欧拉数 同余 Jacobi符号 Euler数 超几何级数 组合性质 伯努利数 一致性
  • 相关文献

参考文献52

  • 1SUN ZhiWei Department of Mathematics,Nanjing University,Nanjing 210093,China.Binomial coefficients,Catalan numbers and Lucas quotients[J].Science China Mathematics,2010,53(9):2473-2488. 被引量:5
  • 2Lehmer E.On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Annals of Mathematics . 1938
  • 3Kilbourn T.An extension of the Ap′ery number supercongruence. Acta Arithmetica . 2006
  • 4Ishikawa T.On Beukers’’congruence. Kobe Journal of Mathematics . 1989
  • 5Gould H W.Combinatorial Identities. . 1972
  • 6Beukers F.Another congruence for the Ap′ery numbers. Journal of Number Theory . 1987
  • 7Baruah N D,Berndt B C.Eisenstein series and Ramanujan-type series for1/π. The Ramanujan Journal . 2010
  • 8Amdeberhan T,Zeilberger D.Hypergeometric series acceleration via the WZ method. Electron J Combin . 1997
  • 9Ahlgren A.Gaussian hypergeometric series and combinatorial congruences. Symbolic Computation,NumberTheory,Special Functions,Physics and Combinatorics . 2001
  • 10Rodriguez-Villegas F.Hypergeometric families of Calabi-Yau manifolds. Fields Inst Commun . 2003

二级参考文献15

  • 1孙智伟.REDUCTION OF UNKNOWNS IN DIOPHANTINE REPRESENTATIONS[J].Science China Mathematics,1992,35(3):257-269. 被引量:3
  • 2E. B. Vinberg.On some number-theoretic conjectures of V. Arnold[J]. Japanese Journal of Mathematics . 2007 (2)
  • 3Zhi-Wei Sun.On the sum Σ k≡r(modm) ( k n ) and related congruencesand related congruences[J]. Israel Journal of Mathematics . 2002 (1)
  • 4Graham R L,Knuth D E,Patashnik O.Concrete Mathematics. . 1994
  • 5Sun Z W.Binomial coefficients and quadratic fields. Proceedings of the American Mathematical Society . 2006
  • 6Sun Z W.Various congruences involving binomial coefficients and higher-order Catalan numbers. http://arxiv.org/abs/0909.3808 .
  • 7Sun Z W,Tauraso R.New congruences for central binomial coefficients. Advances in Applied Mechanics . 2010
  • 8Sun Z W,Tauraso R.On some new congruences for binomial coefficients. http://arxiv. org/abs/0709.1665 .
  • 9Zhao L L,Pan H,Sun Z W.Some congruences for the second-order Catalan numbers. Proceedings of the American Mathematical Society . 2010
  • 10Sethian JA.Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. . 1999

共引文献4

同被引文献11

  • 1SUN ZhiWei Department of Mathematics,Nanjing University,Nanjing 210093,China.Binomial coefficients,Catalan numbers and Lucas quotients[J].Science China Mathematics,2010,53(9):2473-2488. 被引量:5
  • 2Zhi-Hong Sun.Generalized Legendre polynomials and related supercongruences[J].Journal of Number Theory.2014
  • 3Zhi-Wei Sun.On congruences related to central binomial coefficients[J].Journal of Number Theory.2011(11)
  • 4Zhi-Hong Sun.Congruences concerning Legendre polynomials[J].Proceedings of the American Mathematical Society.2010(6)
  • 5Victor J.W. Guo,Jiang Zeng.Some congruences involving central q -binomial coefficients[J].Advances in Applied Mathematics.2010(3)
  • 6Eric Mortenson.Supercongruences between truncated $_{2}F_{1}$ hypergeometric functions and their Gaussian analogs[J].Transactions of the American Mathematical Society.2002(3)
  • 7Eric Mortenson.A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function[J].Journal of Number Theory.2002(1)
  • 8SUN Zhi-Wei.Congruences involving generalized central trinomial coefficients[J].Science China Mathematics,2014,57(7):1375-1400. 被引量:3
  • 9PAN Hao,SUN Zhi-Wei.Proof of three conjectures on congruences[J].Science China Mathematics,2014,57(10):2091-2102. 被引量:2
  • 10孙智伟.关于L-函数特殊值的新级数(英文)[J].南京大学学报(数学半年刊),2015,32(2):189-218. 被引量:3

引证文献10

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部