期刊文献+

滑动蒙皮变后掠气动力非定常滞回与线性建模 被引量:6

UNSTEADY DYNAMIC AERODYNAMIC HYSTERESIS EFFECTS AND LINEAR MODELING ABOUT THE SLIDE-SKIN SWEPT-ANGLE MORPHING WING
下载PDF
导出
摘要 针对低速不可压条件下滑动蒙皮方式变后掠过程中非定常动态气动特性开展了3方面的研究工作:(1)飞行器变形过程中非定常动态气动特性风洞试验技术研究;(2)变形过程中滞回效应研究和机理分析;(3)基于风洞试验结果开展变形过程中非定常动态气动力线性建模.初步研究表明:(1)采用强迫振荡法可以有效地获取变形过程中非定常动态气动力滞回效应;(2)造成变形过程中气动滞回效应的机理有两个,即"动边界效应"和"流场结构滞回效应",造成滞回效应的机理可能主要在于后者;(3)引入升力系数和俯仰力矩系数随后掠角变化率的动导数概念,可以建立变形过程中非定常动态气动力线性模型. In this paper, three jobs were carried out about the unsteady dynamic aerodynamic effects during the sliding skin swept-angle wing morphing under the incompressible condition. (1) The wind tunnel experimental measure technologies about the unsteady dynamic aerodynamic characteristic during aircraft morphing were studied; (2) The aerodynamic hysteresis effects during the swept-angle morphing were investigated and the mechanisms were analyzed initially; (3) The unsteady dynamic aerodynamic linear models were made during morphing based on the experimental results. The primary research indicated that: (1) the method of the forced periodic morphing could obtain the unsteady dynamic aerodynamic hysteresis effects effectively; (2) there were two mechanisms which bring the effects: "The moving boundary effect" and "The flow structure hysteresis effect". And the hysteresis effects in this paper might be caused by the latter mainly; (3) the dynamic derivatives of the lift and pitching moment coefficients to the morphing rate of swept-angle were defined in this paper, which can make the linear model about the unsteady dynamic aerodynamics during morphing.
出处 《力学学报》 EI CSCD 北大核心 2011年第6期1020-1029,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(90816026)~~
关键词 可变形飞行器 非定常 动态 滞回效应 气动力建模 morphing aircraft, unsteady, dynamic, hysteresis effect, aerodynamic modeling
  • 相关文献

参考文献17

  • 1Wolf M, Johansson LC, von Busse R, et al. Kinematics of flight and the relationship to the vortex wake of a Pal- las'long tongued bat (Glossophaga soricina). The Journal of Experimental Biology, 2010, 213(12): 2142-2153.
  • 2Lentink D, Mfiller UK, Stamhuis E J, et al. How swifts con- trol their glide performance with morphing wings. Nature, 2007, 446(7139): 1082-1085.
  • 3Weisshaar T. Morphing aircraft technology -- shapes for aircraft design. In: Meeting Proceedings RTO- MP-AVT-141, Neuilly-sur-Seine, France: RTO, 2006. O1- 1-O1-20.
  • 4Clery D. Aircraft designers shoot for savings on the wing. Science, 2009, 325(5942): 810.
  • 5Gamboa P, Vale J, Lau FJP, et al. Optimization of a mor- phing wing based on coupled aerodynamic and structural constraints. AIAA Journal, 2009, 47(9): 2087-2103.
  • 6Namgoong H, Crossley WA, Lyrintzis AS. Aerodynamic optimization of a morphing airfoil using energy as an ob- jective. AIAA Journal, 2007, 45(9): 2113-2124.
  • 7Maute K, Reich GW. Integrated multidisciplinary topology optimization approach to adaptive wing design. Journal of Aircraft, 2006, 43(1): 253-263.
  • 8Seigler TM, Neal DA, Bae JS, et al. Modeling and flight control of large-scale morphing aircraft. Journal of Air- craft, 2007, 44(4): 1077-1087.
  • 9Samuel JB, Pines D. Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles. Journal of Aircraft, 2007, 44(4): 1088-1099.
  • 10Marmier P, Wereley NM. Morphing wings of a small scale. UAV using inflatable actuators for sweep control. AIAA 2003-1802.

二级参考文献12

  • 1Lentink D, Muller U K, Stamhuis E J, et al. How swifts control their glide performance with morphing wings[J] Nature, 2007, 446(3139) : 1082 1085.
  • 2McGowan A M R, Cox D E, Lazos B S, et al. Biologically inspired technologies in NASA's morphing project[C] //Proceedings of SPIE-The International Society for Optical Engineering. 2003, 5051:1-13.
  • 3Smith B L, Glezer A. The formation and evolution of syntheticjets[J]. Physics of Fluids, 1998, 10(9)= 2281-2297.
  • 4McManus K, Joshi P B, Legner H H, et al. Active control of aerodynamic stall using pulsed jet actuators[R]. AIAA-1995-2187, 1995.
  • 5Chen F J, Beeler G B. Virtual shaping of a two -dimensional NACA 0015 airfoil using synthetic jet actuator[R]. AIAA-2002-3273, 2002.
  • 6Roseman H, Birkemeyer J, Knauer A. Shock control by adaptive elements for transportation aircraft wings[C]// RTO AVT Symposium on Active Control Technology for Enhanced Performance Operation Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles. 2000.
  • 7Hall J M. Executive summary AFTI/F -111 mission adaptive wing[R]. WRDC-TR-89-3083, 1989.
  • 8Pendleton E, Flick P, Paul D, et al. The X-53 a summaryof the active aeroelastie wing flight research program [R]. AIAA-2007-1855, 2007.
  • 9Kudva J. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material System and Structure, 2004, 15:261-267.
  • 10Andersen G, Cowan D, Piatak D. Aeroelastic modeling, analysis and testing of a morphing wing structure [R]. AIAA-2007-1734, 2007.

共引文献29

同被引文献65

  • 1郝继光,姜毅,韩书永,廖庆.一种新的动网格更新技术及其应用[J].弹道学报,2007,19(2):88-92. 被引量:30
  • 2崔尔杰,白鹏,杨基明.智能变形飞行器的发展道路[J].航空制造技术,2007,50(8):38-41. 被引量:47
  • 3Lentink D, M/iller UK, Stamhuis EJ, et al. How swifts con- trol their glide performance with morphing wings. Nature, 2007, 446(7139): 1082-1085.
  • 4Henningsson E Spedding GR, Hedenstr6m A. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. The Journal of Experimental Biology, 2008, 211(5): 717-730.
  • 5Hedenstrm A, Johansson LC, Wolf M, et al. Bat flight generates complex aerodynamic tracks. Science, 2007, 316(5826): 894-897.
  • 6Wolf M, Johansson LC, von Busse R, et al. Kinematics of flight and the relationship to the vortex wake of a Pallas'long tongued bat (Glosso-phaga soricina). The Journal of Experimental Biology, 2010, 213(12): 2142-2153.
  • 7Weisshaar T. Morphing aircraft technology -- new shapes for air- craft Design. In: Meeting Proceedings RTO-MP-AVT-141, Neuilly- sur-Seine, France: RTO, 2006: 2011-1-11-20.
  • 8Clery D. Aircraft designers shoot for savings on the wing. Science, 2009, 325(5942): 810.
  • 9Secanell M, Suleman A, Gamboa P. Design of a morphing airfoil us-ing aerodynamic shape optimization. AIAA Journal, 2006, 44(7): 1550-1562.
  • 10Gamboa P, Vale J, Lau FJP, et al. Optimization of a morphing wing based on coupled aerodynamic and structural constraints. AIAA Journal, 2009, 47(9): 2087-2103.

引证文献6

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部