期刊文献+

一类非连续阻尼力分段线性系统的分岔研究 被引量:3

BIFURCATION RESEARCH FOR PIECEWISE LINEAR SYSTEM INVOLVED IN DISCONTINUOUS DAMPING FORCE
下载PDF
导出
摘要 以某货车的主副钢板弹簧后悬架系统为模型,建立了一类两自由度具有非连续阻尼力分段线性系统的微分方程.建立Poincare映射,推导了系统在各分界面处的跳跃矩阵,经分析得知跳跃矩阵与系统的弹簧刚度无关,只与阻尼力有关.通过数值方法进一步揭示了系统发生的Neimark-Sacker分岔现象.分析了在单边横截穿越情况下阻尼系数对系统稳定性的影响.对该类碰撞系统分岔和混沌的研究,有助于工程中此类弹性碰撞系统的优化设计. Based on truck suspension model consisting of primary and subsidiary springs, a two-degree-offreedom system with piecewise-linearity involved in discontinuous damping force is established The stroboscopic Poincare map is established, and the saltation matrix is deduced by zero-time discontinuity mapping method at the interface. The result indicates that the saltation matrix is independent on spring rate, but is not independent on damping force. The Neimark-Sacker bifurcation point is investigated by the numerical calculation. The research on bifurcation and chaos can contribute to optimizing design in impacting systems.
出处 《力学学报》 EI CSCD 北大核心 2011年第6期1191-1195,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 山东省自然科学基金资助项目(ZR2009FL016)~~
关键词 非连续阻尼力 分段线性 POINCARÉ映射 跳跃矩阵 分岔 discontinuous damping force, piecewise-linearity, Poincare map, saltation, bifurcation
  • 相关文献

参考文献6

二级参考文献48

  • 1张彦梅,陆启韶,李群宏.一类双自由度碰振系统的亚谐周期运动存在性[J].动力学与控制学报,2003,1(1):29-34. 被引量:5
  • 2贾启芬,于雯,刘习军,王春敏.汽车悬架系统的分段线性非线性振动机理的研究[J].工程力学,2005,22(1):88-92. 被引量:13
  • 3Jianhua Xie,Wangcai Ding,E.H. Dowell,L. N. Virgin.Hopf-flip bifurcation of high dimensional maps and application to vibro-impact systems[J].Acta Mechanica Sinica,2005,21(4):402-410. 被引量:9
  • 4凌复华.非线性振动系统周期解的数值分析[J].应用数学和力学,1983,4(4).
  • 5[2]Tatyana L., Koen E.. Computing Floquet multipliers for functional differential equations[J], International Journal of Bifurcation and Chaos. 2002,12(12):2977~2989
  • 6[3]Kurt Lust. Improved numerical Floquet multipliers[J], International Journal of Bifurcation and Chaos. 2001, 11(9): 2389~2410
  • 7[4]Shaw S W. Homes P J. A periodically forced piecewise linear oscillator[J], Journal of Sound and Vibration , 1983,90(1):129~155
  • 8[6]Reithmeier E. Nonlinear Dynamics in Engineering Systems[M], Springer-Verlag, 1990:249~256
  • 9[8]Ivanov A P. Impact oscillations: Linear theory of stability and bifurcations. Journal of Sound and Vibration , 1994,178(3):361~378
  • 10[10]Kaas-Petersen C. Computation of quasi-periodic solutions of forced dissipative systems[J], Journal of Computational Physics, 1985.58:395~408

共引文献62

同被引文献31

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部