摘要
随着电子商务的迅速发展,越来越多的顾客选择网上购物,如何让用户在海量信息中快速而准确地找到合适的产品,做出购买决定是一件很难的事情。个性化推荐技术能够较好的解决此问题,它通过分析顾客相关信息,向用户推荐感兴趣的产品,以便做出最后的决策。本文分析国内外个性化推荐技术研究现状,着重介绍协同过滤推荐技术存在的冷开始、数据稀疏性、伸缩性、"托"攻击等问题。为了改进传统协同过滤技术,结合典型的信任评估模型,提出了本文的观点。并介绍此推荐技术的两种算法,即用户单一兴趣下基于信任机制的电子商务个性化推荐算法和用户多兴趣下基于信任机制的电子商务个性化推荐算法。
出处
《电子商务》
2011年第12期62-64,共3页
E-Business Journal