期刊文献+

Comparison of geochemical parameters derived from comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry and conventional gas chromatography-mass spectrometry 被引量:5

Comparison of geochemical parameters derived from comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry and conventional gas chromatography-mass spectrometry
原文传递
导出
摘要 The saturated and aromatic hydrocarbon fractions of crude oil samples have been analyzed by using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and conventional gas chro- matography-mass spectrometry (GC-MS). In order to investigate the consistency and discrepancy of the obtained data from the two instruments, some petroleum geochemical parameters have been compared. A comparison of 23 geochemical parameters indicates that 10 parameters are comparable from the two instruments with less than 5% deviations. Therefore, GCxGC-TOFMS is equivalent to conventional GC-MS in some geochemical parameter acquisitions. However, the other 13 parameters are discrepant, including gammacerane / αβ-hopane, Ts/Tm, 2-ethyl-naphthalene / 1-ethyl-naphthalene (ENR), (2, 6-dimethyl-naphthalene +2,7-dimethyl-naphthalene) / 1,5-dimethyl-naphthalene (DNR), etc. Furthermore, compared to GCxGC-TOFMS, some low concentration compounds could not be detected by the conventional GC-MS, which results in the missing of related geochemical data. Normally, this is caused by the limited separation power and peak capacity of the conventional GC column. Besides, the co-eluting peak integrations are also affected significantly due to the incomplete separation of the compounds. Some low concentration compounds might not be detected because of the interference from the baseline noise or from other substances. GCxGC-TOFMS prevails in compound separation against the conventional GC-MS by avoiding co-elution, which achieves more accurate and precise peak area measurement with the presence of a true baseline. So petroleum geochemical parameters obtained from the GCxGC-TOFMS GCxGC-TOFMS may become one of the most effective analytical are more reliable than those from the conventional GC-MS tools for the oil and gas geochemical study. The saturated and aromatic hydrocarbon fractions of crude oil samples have been analyzed by using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) and conventional gas chromatography-mass spectrometry (GC-MS). In order to investigate the consistency and discrepancy of the obtained data from the two instruments, some petroleum geochemical parameters have been compared. A comparison of 23 geochemical parameters indicates that 10 parameters are comparable from the two instruments with less than 5% deviations. Therefore, GC×GC-TOFMS is equivalent to conventional GC-MS in some geochemical parameter acquisitions. However, the other 13 parameters are discrepant, including gammacerane / αβ-hopane, Ts/Tm, 2-ethyl-naphthalene / 1-ethyl-naphthalene (ENR), (2, 6-dimethyl-naphthalene +2,7-dimethyl-naphthalene) / 1,5-dimethyl-naphthalene (DNR), etc. Furthermore, compared to GC× GC-TOFMS, some low concentration compounds could not be detected by the conventional GC-MS, which results in the missing of related geochemical data. Normally, this is caused by the limited separation power and peak capacity of the conventional GC column. Besides, the co-eluting peak integrations are also affected significantly due to the incomplete separation of the compounds. Some low concentration compounds might not be detected because of the interference from the baseline noise or from other substances. GC×GC-TOFMS prevails in compound separation against the conventional GC-MS by avoiding co-elution, which achieves more accurate and precise peak area measurement with the presence of a true baseline. So petroleum geochemical parameters obtained from the GC×GC-TOFMS are more reliable than those from the conventional GC-MS. GC×GC-TOFMS may become one of the most effective analytical tools for the oil and gas geochemical study.
出处 《Science China Earth Sciences》 SCIE EI CAS 2011年第12期1892-1901,共10页 中国科学(地球科学英文版)
基金 supported by the Science and Technology Management Department of China National Petroleum Corporation (Grant No. 2008A-0603)
关键词 comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry gas chromatography-mass spectrometry geochemical parameters 全二维气相色谱 地球化学参数 飞行时间质谱 传统 TOFMS 质谱法 二甲基萘 地球化学数据
  • 相关文献

参考文献28

二级参考文献60

共引文献174

同被引文献91

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部