摘要
本文研究了基于 ARG( Attributed Relation Graph)模型匹配算法的人脸图象的特征定位方法。该方法可有效地完成眼、口、眉的自动定位。基于人脸生理特征我们建立人脸图象的ARG模型对人脸图象进行了精确的描述。在此基础上本义采用了连续型Hopfield神经网络模型并行处理进行ARG模型匹配,通过能量函数极小化得到全局最优的特征定位结果。实验结果证实了该方法有效、稳定、且具有较快的收敛速度。
A facial features location method based on ARG (Attributed Relation Graph) and a graph-matching method based on HF neural network are proposed. Here we can capture the contours of eye, mouth and eyebrow. First, based on physiological knowledge of human face we build thee ARG model. In the graph-matching step we proposed a HT algorithm and design a cost function. Experimental results with some real images show the method has good performance and high rate.
出处
《信号处理》
CSCD
1999年第B12期67-72,共6页
Journal of Signal Processing
关键词
ARG模型
人脸特征定位
匹配算法
图象识别
ARG model, Facial feature location and extraction, Hopfield neural network