期刊文献+

X65厚管线板控冷工艺与翘曲分析 被引量:1

The Study of Controlled Cooling Technology and Warping of X65 Heavy Pipeline Plate
下载PDF
导出
摘要 通过扩展Avrami相变动力学模型、开发线性混合热膨胀模型和使用Leblond相变诱导塑性(TRIP)模型建立了X65厚管线板控冷过程的热力耦合有限元模型,全面考虑了相变潜热、相变膨胀、TRIP效应、热膨胀等机制.用该模型对3种控冷模式下X65厚管线板控冷过程的温度场和应力/应变场进行了模拟,并分析了控冷模式对翘曲变形的影响.结果表明:不对称冷却产生的上下表面间的温差所导致的应力/应变场的不对称分布是材料翘曲的根本原因;交替冷却不仅可降低温差,还可大幅减小材料的翘曲;实现上下表面对称冷却和采用交替冷却是保证产品平直和性能均匀的有效方法. A thermo-mechanical coupled finite element model is established, which combines the modified Avrami transformation dynamics model, the linear mixture thermal expansion model, and the Leblond transformation induced plasticity (TRIP)model. The model considers latent heat, transformation dilatation, TRIP effect, as well as thermal expansion and elasto plastic deformation. The influence of three different controlled cooling modes on temperature field and stress, strain field of X65 heavy pipeline plate is simulated and the warping of plate is analyzed. The result shows that the main reason of warping is the temperature difference between the top and bottom surfaces from unsymmetric cooling, which causes the unsymmetric distribution of stress and strain field. Alternate cooling, in which laminar cooling and air cooling appear alternately, decreases the temperature difference and reduces the magnitude of warping strongly. To avoid warping and to realize the uniformity of properties, it is more effective to maintain the cooling homogeneity between the top and bottom surface of plate during controlled cooling, and to use alternate cooling.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第12期1886-1891,共6页 Journal of Beijing University of Technology
基金 云南省自然科学基金资助项目(2002E0005R)
关键词 管钱 控冷 热力耦合 有限元 翅曲 pipeline controlled cooling thermomechanical coupled finite element warping
  • 相关文献

参考文献1

二级参考文献2

共引文献9

同被引文献13

  • 1陈明鸣,王元良.热处理工艺对LD10铝合金残余应力的影响[J].西南交通大学学报,1997,32(2):198-202. 被引量:8
  • 2苏艳萍,杨荃,何安瑞,王晓东,边海涛.热轧带钢层流冷却过程中的热力耦合求解[J].重型机械,2007(4):30-34. 被引量:8
  • 3周娜,王丙兴,吴迪,张殿华.中厚板控冷过程的温度-应力耦合计算与翘曲分析[J].东北大学学报(自然科学版),2007,28(12):1717-1720. 被引量:10
  • 4WANG Xiaodong,YANG Quan,HE Anrui. Calculation of thermal stress affecting plate flatness change during run-out table cooling in hot steel plate rolling[J].Journal of Materials Processing Technology,2008.130-146.
  • 5AVRAMI M. Kinetics of phase change. Ⅲ:granulation, phase change an microstructures[J].Journal of Chemical Physics,1941.177-184.
  • 6LEBLOND J B,DEVAUX J,DEVAUX J C. Mathematical modelling of transformation plasticity in steels-I.Case of ideal-plastic phases[J].International Journal of Plasticity,1989.551-572.
  • 7MAHNKEN R,SCHNEIDT A,ANTRETTER T. Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel[J].International Journal of Plasticity,2009.183-204.
  • 8ANTRETTER T,ZHANG D F,PARTEDER E. Modelling transformation induced plasticity-an application to heavy steel plates[J].Steel Research International,2010,(08):675-680.
  • 9张德丰;陆建生;宋鹏.X65管线厚板控制冷却的建模与应用[J]东北大学学报(自然科学版),2010(增刊):160-164.
  • 10GREENWOOD G W,JOHNSON R H. The deformation of metals under small stresses during phase transformations[J].Proceedings of the Royal Society of London Series A,1965.403-422.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部