期刊文献+

基于贝叶斯压缩感知的合成孔径雷达高分辨成像 被引量:12

SAR Imaging Based on Bayesian Compressive Sensing
下载PDF
导出
摘要 基于压缩感知(CS)的合成孔径雷达成像方法可以显著减少数据采样时间、数据量以及节省信号带宽。然而,基于CS的方法对噪声和杂波相当敏感,在信噪比较低的时候,成像质量较差。该文结合CS理论提出了合成孔径雷达中的随机孔径贝叶斯压缩感知(BCS)高分辨2维成像方法。在距离向应用CS减少采样数据的同时,在方位向随机抽取部分孔径位置发射和接收信号,以少量的测量孔径和测量数据获得重建目标空间的足够信息。基于贝叶斯的分析方法由于考虑了成像场景中的杂波以及压缩采样过程中的加性噪声,因而能够更好地重建目标空间。仿真结果表明,基于贝叶斯方法得到的图像比基于FFT方法得到的图像更加尖锐,比基于CS方法得到的图像更加稀疏,因而具有更高的分辨率。 The Compressive Sensing (CS) based SAR imaging method can reduce the sampling time, the data volume and save signal band width. However, the CS based methods are sensitive to noise and clutter. In this paper a new imaging modality based on Bayesian Compressive Sensing (BCS) is proposed along with a novel compressed sampling scheme. This new imaging scheme requires minor change to traditional used system and allows both range and azimuth compressed sampling. Also, the Bayesian formalism accounts for additive noise encountered in the compressed measurement process. Experiments are carried out with noisy and cluttered imaging scenes to verify the new imaging scheme. The results indicate that the Bayesian formalism can provide a sharp and sparse image absence of side-lobes which is the common problem in conventional imaging methods and have fewer artifacts compared to the previous version of CS based methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第12期2863-2868,共6页 Journal of Electronics & Information Technology
基金 中央高校基础研究基金(ZYGX2009Z005) 国家自然科学基金(60772143)资助课题
关键词 合成孔径雷达 压缩感知 高分辨 贝叶斯压缩感知 超宽带 Synthetic Aperture Radar (SAR) Compressive Sensing (CS) High resolution Bayesian CompressiveSensing (BCS) Wide-band
  • 相关文献

参考文献17

  • 1Candes E J, Romberg J and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 2Candes E J and Wakin M B. An introduction to compressive sampling [J]. IEEE on Signal Processing Magazine, 2008, 25(2): 21-30.
  • 3Donoho D L. Compressive sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Gurbuz A C, McClellan J H, and Scott W R. Compressive sensing for subsurface imaging using ground penetrating radar [J]. Signal Processing, 2009, 89(10): 1959-1972.
  • 5Zhang L, Xing M D, and Chen C W. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing [J], IEEE Transactions on Geosciences and Remote Sensing, 2010, 48(10): 3824-3838.
  • 6谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234-1238. 被引量:49
  • 7Ender J H G. On compressive sensing applied to radar [J]. Signal Processing, 2010, 90(2): 1402-1414.
  • 8余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12-16. 被引量:48
  • 9Li S H, Xue Y, and Carin L. Bayesian compressive sensing [J]. IEEE Transactions on Signal Processing, 2008, 57(6): 2346-2356.
  • 10Babacan S D and Monila R. Bayesian compressive sensing using Laplace priors [J]. IEEE Transactions on hnage Processing, 2010, 19(1): 53-63.

二级参考文献34

  • 1Daniels D J. Surface-penetrating radar[J]. Electronics and Communication Engineering Jourual, 1996, 8(4): 165-182.
  • 2Fang G Y. The research activities of ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Marina Mandarin Hotel, Singapore, Sept. 24-26, 2007: 43-45.
  • 3Xu X and Miller E L. Optimization of migration method to locate buried object in lossy medium[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, Jun. 24-28, 2002: 337-339.
  • 4Leuschen C J and Plumb R G. A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 929-936.
  • 5Carin L, Geng N, and McClure M, et al.. Ultra-wide-band synthetic-aperture radar for mine-field detection[J]. IEEE Antennas and Propagation Magazine, 1999, 41(1): 18-33.
  • 6Hayakawa H, Nadamoto A, and Uesaka S. 3D radar imaging of buried objects using arbitrary scaning GPR[C]. Eighth International Conference on Ground Penetrating Radar, Queensland, Australia, May 23-26, 2000: 273-276.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8): 1207-1223.
  • 9Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 10Candes E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452.

共引文献80

同被引文献104

  • 1白雪茹,孙光才,武其松,邢孟道,保铮.窄带雷达自旋目标成像[J].中国科学:信息科学,2010,40(11):1508-1518. 被引量:5
  • 2朱兆达,邱晓晖,余志舜.用改进的多普勒中心跟踪法进行ISAR运动补偿[J].电子学报,1997,25(3):65-69. 被引量:25
  • 3关普华.基于依赖分析的贝叶斯网络结构学习[D].吉林:吉林大学,2005.
  • 4Heckennan D. A Bayesian approach for learning causal networks [C]//Proceedings of Eleventh Conference on Uncertainty in Ar- tificial Intelligence. Montreal, QU: Morgan Kaufinann, 2008: 285-295.
  • 5Chickering D, Geiger D, Heckerman D. Learning Bayesian net- works: Search methods and experimental results[C]// Fifth In- ternational Workshop on Artificial Intelligence and Statistics. 2009: 112-128.
  • 6王琦,周峰,邢孟道,黄金杰,保铮.雷达成像中稀疏孔径外推新算法[J].电子与信息学报,2007,29(11):2698-2701. 被引量:3
  • 7RichardGW.吕跃广,详.电子情报一雷达信号截获与分析[M].北京:电子工业出版社,2008:12-18.
  • 8赵宗峰.基于信号波形设计的SAR抗干扰技术研究[D].[硕士论文],国防科技大学,2007.
  • 9Pan Xiao-yi, Wang Wei, Feng De-jun, et al.. On deception jamming for countering bistntic ISAR based on sub-Nyquistsampling[J]. IET Radar, Sonar & Navigation, 2014, 8(3): 173-179.
  • 10Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency ilfformation[J]. IEEE Transactions on Information Th.eory, 2006, 52(2): 489-509.

引证文献12

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部