期刊文献+

基于马尔可夫过程的卫星移动信道模型及长期预测方法 被引量:4

Markov Process Based Satellite Mobile Channel Model and Long Term Prediction Method
下载PDF
导出
摘要 卫星移动信道可被描述为基于有限状态马尔可夫过程的衰落模型,该文分析了卫星信道的可预测性,然后基于加权预测思想提出了一种卫星移动信道长期预测方法,该方法在当前信道采样的基础上进行二次采样,采样频率大于马尔可夫状态转移速率的2倍,利用信道状态的相关性和信道状态转移概率信息来加权预测未来长期内的信道状态,并依据自回归预测模型给出信道预测输出值,仿真结果表明,采用此方法对卫星信道未来的信道状态进行预测,在信噪比较高时均方误差能够达到10 2量级,在自适应传输过程中可以降低系统平均误比特率,且能够提高系统吞吐量性能,这对卫星移动通信系统的自适应传输和自适应资源分配都具有一定的指导意义。 Satellite mobile channel can be described as a fading channel model based on Markov process. Firstly, the predictability of satellite mobile channel is analyzed in this paper. Then a long term prediction method is proposed based on weighting prediction. The method resamples the channel sample values with a sample rate 2 times of the Markov state transferring speed, and uses the correlation of the channel states and Markov state transfer probability to predict the future channel state and outputs the channel prediction value of the long term future according to autoregression prediction model. Simulation results show that by using the proposed method the mean square error can reach about 10^-2 when signal noise ratio is relatively high, moreover, the system average bit error rate can be reduced and the system throughput can be increased. This method can be used to instruct the adaptive transmission and adaptive resource assignment of satellite mobile communications.
作者 周坡 曹志刚
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第12期2948-2953,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61021001) 清华大学自主科研计划资助课题
关键词 卫星移动信道 马尔可夫过程 加权预测 长期预测 Satellite mobile channel Markov process Weighting prediction Long term prediction
  • 相关文献

参考文献12

  • 1Chini P, Giambene G, and Kota S. A survey on mobile satellite systems[J]. International Journal of Satellite Communications and Networking, 2010, 28(1): 29-57.
  • 2Duel-Hallen A, Hu Sheng-quan, and Hallen H. Long-range prediction of fading signals[J]. IEEE Signal Processing Magazine, 2000, 17(3): 62-75.
  • 3Luong Dinh-Dung, Gregoire J C, and Dziong Z. Pattern- based channel quality prediction for adaptive coding and modulation in wireless networks[C]. IEEE International Conference on Communications, Cape Town, South Africa, May 23-27, 2010: 1-6.
  • 4Heidari A, Khandani A K, and McAvoy D. Adaptive modeling and long-range prediction of mobile fading channels[J]. IET Communications, 2010, 4(1): 39-50.
  • 5Loo C. A statistical model for land mobile satellite link[J]. IEEE Transactions on Vehicular Technology, 1985, 34(3): 122-127.
  • 6Corazza G E and Vatalaro F. A statistical model for land mobile satellite channels and its application to nonstationary orbit systems[J]. IEEE Transactions on Vehicular Technology, 1994, 43(3): 738-742.
  • 7Lutz E, Cygan D, Dippold M, et al.. The land mobile satellite communication channel-recording, statistical and channel modelIJ]. IEEE Transactions on Vehicular Technology, 1991, 40(2): 375-386.
  • 8Fernando P F, Maryan V C, Cabado C E, ct al.. Statistical modeling of the LMS channel[J]. IEEE Transactions on Vehicular Technology, 2001, 50(6): 1549-1567.
  • 9Liolis K P, Gomez-Vilardeba J, Casini E, et al.. Statistical modeling of dual-polarized MIMO land mobile satellite channels[J]. IEEE Transactions on Communications, 2010, 58(11): 3077-3083.
  • 10Satorius E H and Zhong Ye. Adaptive modulation and coding techniques in MUOS fading/scintillation environments[C]. Proceedings of the IEEE Military Communication Conference, Anaheim, USA, Oct. 7-10, 2002: 321-327.

二级参考文献16

  • 1A Goel, R J Graves. Electronic System Reliability: Collating Prediction Models[ J]. IEEE Transactions on Device and Materials Reliability, 2006,6(2) : 258 - 265.
  • 2J D Parry, J Rantala, C J M Lasance. Enhanced Electronic System Reliability-Challenges for Temperature Prediction[J]. IEEE. Transactions on Components and Packaging Technologies, 2002,25(4) :533 - 538.
  • 3A Abraham. A Soft Computing Approach for Fault Prediction of Electronic Systems [ A ]. Proceedings of the Second International Conference on Computers in Industry [ C ]. Bahrain: Bahrain Society of Engineers Press,2000.83 -91.
  • 4K Benabdeslem. Hybrid neural system for time series prediction [ A]. Proceedings of the 28th International Conference on Information Technology Interfaces [ C ]. Croatia: IEEE Press, 2006. 349 - 354.
  • 5D Ruta, B Gabrys. Neural Network Ensembles for Time Series Prediction[A]. Proceedings of International Joint Conference on Neural Networks[C]. Orlando: IEEE Press,2007.1204 - 1209.
  • 6Z W Shi,M Han. Support vector echo-state machine for chaotic time-series prediction[ J ]. IEEE Transactions on Neural Networks,2007,18(2) : 359 - 372.
  • 7S F Crone, S Lessmann, S Pietsch. Forecasting with Computational Intelligence-An Evaluation of Support Vector Regression and Artificial Neural Networks for Time Series Prediction[ A]. Proceedings of 2006 International Joint Conference on Neural Networks[ C]. Vancouver: IEEE Press,2006. 3159- 3166.
  • 8M A LFilho, T Ohishi, R Ballini. Ensembles of Selected and Evolved Predictors using Genetic Algorithms for Time Series Prediction[A]. Proceedings of IEEE Congress on Evolutionary Computation[ C ]. Vancouver: IEEE Press, 2006. 2872 - 2879.
  • 9O Castillo,P Melin. Comparison of Hybrid Intelligent Systems, Neural Networks and Interval Type-2 Fuzzy Logic for Time Series Prediction [ A ]. Proceedings of International Joint Conference on Neural Networks[ C]. Orlando: IEEE Press, 2007. 3086 - 3091.
  • 10N Seshadri, C Stmdberg. List Viterbi decoding algorithms with applications [ J ]. IEEE Transactions on Communications, 1994, 42(2) :313 - 323.

共引文献13

同被引文献62

  • 1杨卫东,冯琳琳,刘伎昭,朱红松.车载自组织网络中网络连通特性研究[J].通信学报,2012,33(S1):48-52. 被引量:8
  • 2Scheidt D. Intelligent control of auxiliary ship sys- tems[C]// The 2nd World Maritime Technology Con- ference. London, UK: IMarEST, 2006: 1072-1079.
  • 3Scheidt D. Intelligent agent-based control[J]. Johns Hopkins APL Technical Digest, 2002, 23(4):4-23.
  • 4Lively K, Scheidt D. Mission based engineering plant [C]// Proceedings of ASNE Reconfiguration and Sur- vivability Symposium. Orlando: IEEE Press, 2005: 311-318.
  • 5Tichy P, Slechta P. Industrial MAS for planning and control[J]. Lecture Notes in Computer Science, 2002, 2322(12) : 137-154.
  • 6Maturana F, Staron R. Agent virtual machine for au- tomation controllers example application: Shipboard automation [ J ]. Robotics and Computer-Integrated Manufacturing, 2008, 24(5) :616-624.
  • 7Spaan M T J, Groen F C A. Team coordination among robotic soccer players[J]. Journal of Control Science and Engineering, 2009, 23(8): 112-119.
  • 8LI Yong-chang. A multi-agent autonomous decision making process for resource allocation[J]. Journal of American Society of Naval Engineers, 2007, 38(6): 1096-1107.
  • 9蔡青松,牛建伟,刘明珠.一种评估机会社会网络中节点消息传播能力的方法[J].软件学报,2012,23:49-58.
  • 10Abele A, Perez F F, Bousquet M, et al. A new physical-statistical model of the land mobile satellite propagation channel//2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP). Barcelona: IEEE Press, 2010: 1-5.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部