摘要
Photodissociation of oxygen from oxymyoglobin(oxyMb) was investigated by means of fluorescence spectroscopy. One of the most important findings of the photodissociation of oxyMb was the discovery of two processes which were affected by excitation intensity, temperature, solvent viscosity, and excitation wavelength. Process I(PI) corresponded to oxygen escaping from the binding site at ferrous heme iron atom within the porphyrin ring into the heme pocket, whereas process II(PII) was ascribed to oxygen escaping from the heme pocket into the solvent. To elucidate this interesting phenomenon, we proposed a model that oxygen encountered two barriers on its way from the binding site at the ferrous heme iron to the solvent. Reversibility and wavelength sensitivity of the photodissociation were also observed.
Photodissociation of oxygen from oxymyoglobin(oxyMb) was investigated by means of fluorescence spectroscopy. One of the most important findings of the photodissociation of oxyMb was the discovery of two processes which were affected by excitation intensity, temperature, solvent viscosity, and excitation wavelength. Process I(PI) corresponded to oxygen escaping from the binding site at ferrous heme iron atom within the porphyrin ring into the heme pocket, whereas process II(PII) was ascribed to oxygen escaping from the heme pocket into the solvent. To elucidate this interesting phenomenon, we proposed a model that oxygen encountered two barriers on its way from the binding site at the ferrous heme iron to the solvent. Reversibility and wavelength sensitivity of the photodissociation were also observed.
基金
Supported by the National Natural Science Foundation of China(No.20871024)
the Program for Liaoning Excellent Talents in University,China(No.RC-04-10)
the Fund of Liaoning Innovative Research Team in University,China(Nos.2006T002,2008T005,2009T003)
the Plan Project of Dalian Science and Technology,China(No.2008E11SF170)