期刊文献+

石墨烯/Si晶体管的研究进展 被引量:1

Research Progress of Graphene/Si Transistors
下载PDF
导出
摘要 石墨烯具有很多优异的力学、电学和结构特性,可用于制备高速、低功耗的半导体电子器件和集成电路芯片。简要介绍了三种石墨烯/Si的制备方法,即剥离法、外延法、剪切和选择转移印刷法,其中外延生长的石墨烯被认为是最终实现碳集成电路的唯一途径。并给出了采用上述方法制备的石墨烯/Si晶体管的电阻、磁阻、载流子迁移和输运特性以及量子霍尔效应(QHE)等电学特性。发现石墨烯/Si晶体管最高频率达155GHz,在室温下具有异常的量子霍尔效应和分数量子霍尔效应。其电荷载流子浓度在电子和空穴之间连续变化,可高达1013 cm-2,迁移率可达2×105 cm2/(V.s)。 Graphene presents many wonderful mechanics, electric and structure characteristics that can be used to fabricate semiconductor electronic devices and integrated circuit chips with super speed and low power. Three kinds of preparation methods for the graphite/Si transistor are briefly introduced, i.e. the stripped method, epitaxial method and graphene-on-demand by cut- and-choose transfer-printing (DCT). Among the methods above the epitaxial method is believed to be the only way to achieve the integrated circuits of grapheme. Then the electric properties of the graphite/Si transistors prepared by above methods are viewed, such as the resistance, magresistance, carrier mobility and transport property, and quantum Hall effect. It is found that the highest frequency of graphene/Si transistor is 155 GHz, and at room temperature it is with exceptional quantum Hall effect and fractional quantum Hall effect. Besides that, the charge carrier concentration changes continuously between electrons and holes, and can be as high as 10^13 cm^-2 and the migration rate can be up to 2×10^5cm^2/(V·s).
作者 丁澜 马锡英
出处 《微纳电子技术》 CAS 北大核心 2011年第12期761-766,共6页 Micronanoelectronic Technology
基金 国家自然科学基金项目(60976071) 绍兴市科技技术资助项目(2009A21054)
关键词 石墨烯 石墨烯/Si晶体管 制备方法 电学特性 磁学特性 graphene graphite/Si transistor fabrication method electric property magnetic property
  • 相关文献

参考文献21

  • 1GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6 (3): 183-191.
  • 2WALLACE P R. The band theory of graphite [J]. American Physical Society, 1947, 71 (9) : 622- 634.
  • 3MCCLURE J W. Diamagnetism of graphite [J]. American Physical Society, I956, 104 (3) : 666- 671.
  • 4NOVOSELOV K S, GEIM A K, MOROZOV S V, el al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306 (5696): 666-669.
  • 5SKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45 (7): 1558-1565.
  • 6TUNG V C, HONG Z R, YANG Y, et al. High-throughput solution processing of large-scale grapheme [J]. Nature Nano- technology, 2009, 4 (1) : 25 - 29.
  • 7HASS J, MILLAN-OTOYA J E, FIRST P N, et al. Interface structure of epitaxial graphene grown on 4H-SiC (0001) [J]. Plays Rev: B, 2008, 78 (20): 1 -40.
  • 8LIANG X G, FU Z L, CHOU S Y. Graphene transistors fa- bricated via transfer-printing in device active-areas on large wa- fer [J]. Nano Letters, 2007, 7 (12): 3840-3844.
  • 9MOON J S, CURTIS D, HU M, et al. Self-aligned graphene on-SiC and graphene-on-Si MOSFETs on 75 mm wafers [C] // Prdceedings of Device Research Conference. South Bend, USA, 2010: 209- 210.
  • 10KIM S K, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457: 706-710.

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部