期刊文献+

基于统计分析的图像去噪 被引量:4

Noise removal of image on the statistic analysis
原文传递
导出
摘要 噪声虽然降低了图像像素之间的相关程度,但是相关性仍然存在.本文以图像邻域像素块为出发点,运用图像邻域像素块之间的相关性分析图像的能量分布,进一步挖掘图像能量分布的特征向量,运用特征向量重构图像达到去除噪声的目的.本文挖掘的特征向量与邻域像素个数、像素块之间的相关性和特征向量的选取有关,从实验上讨论了这三个因素对去噪的影响,并与传统算法相比,本文算法对峰值信噪比(PSNR)较低的图像具有较强的噪声抑制能力,同时图像的边缘和纹理等细节保留较多. The image noise reduces the degree of correlation between the image pixel and its neighbors, but the correlation still exists. As a staring point of neighbor pixel block, the paper uses the correlation between them to analyze the image energy distribution. In order to achieve the purpose of removing noise, the authors further mine the feature vectors of the energy distribution and use these feature vectors to reconstruction image. The feature vectors are relevant to the number of the neighbor pixels, the correlation between image blocks and the selection of feature vectors. The experiments analyze the impact of these factors on de-noising. Compared with traditional algorithms, the algorithm proposed in the paper has the strong capability to suppress noise and keeps more image details.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期1307-1311,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 去噪 高斯噪声 统计分析 特征向量 noise removal, Gaussian noise, statistic analysis, feature vector
  • 相关文献

参考文献5

二级参考文献33

  • 1崔雪梅,孙才新,李剑,李新,杜林.用复小波提取变压器局放脉冲信号特征的研究[J].仪器仪表学报,2005,26(2):199-201. 被引量:11
  • 2叶佳,张建秋,胡波.客观评估彩色图像质量的超复数奇异值分解法[J].电子学报,2007,35(1):28-33. 被引量:13
  • 3胡玉平.基于奇异值分解的自嵌入图像认证水印算法[J].计算机工程,2007,33(16):106-108. 被引量:6
  • 4Eckhorn R,Reitboeck H J,Arndt M,et al.A neural network for futuro linking via synchronous activity:results from cat visual cortex and from simulations[C]//Cotterill R M J.Models of Brain Function.Cambridge,UK:Cambridge Uinv Press,1989:255-272.
  • 5Lin H M,Willson A N.Median filters with adaptive length[J].IEEE Transactions on Circuits and Systems, 1988,35 (6) :675-690.
  • 6Brownrigg D R K.The weighted median filter[J].Commun Ass Comput, 1984,27(8) :807-818.
  • 7Pltas L,Venersanopoulos A N.Nonlinear digital filter:Principle and Appllctions[M].Dceimcht :Kluwer, 1990.
  • 8Hardie R C,Barner K E.Rank conditioned rank selection filters for signal restoration[J].IEEE Transactions on Image Processing, 1994,3(2) : 192-206.
  • 9Konsstantinides K, Yao K. Statistical analysis of effective singular values in matrix rank determination [J]. IEEE Trans on Acoustics, Speech, and Signal Process, 1988, 36(5):757.
  • 10Shnayderman A, Gusev A, Eskicioglu A M. An SVD- based grayscale image quality measure for local and global assessment [J]. IEEE Transactions on Image Process, 2005,14 (2) : 422.

共引文献46

同被引文献40

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部