摘要
建立了轧机轴系双质量扭振参数激励系统的数学模型。应用多尺度法,给出了参数激励下的主参数共振解。通过对定常解平均方程的稳定性分析,得到了系统主参数共振的局部分岔集。当参数改变时,系统主参数共振解的拓扑结构会发生变化。通过数值结果分析,在0<μ<K1/2范围内对系统参数激励项幅值K1取不同的值,系统的幅频响应曲线会发生变化。
A mathematical model is established for roiling machines' torsion vibration system of parametric excitations. By using the method of multiple scales, primary parameter resonance solution is obtained. Through the analysis of the stability of the steady-state solution, the local bifurcation set of primary parameter resonance solution is obtained. When parameters are changed, the topological structure of solution will be changed. The data analysis shows that when the numerical results in 0〈μ〈K1/2 for different K1 are different,amplitude-frequency bifurcation response curves of the system will change.
出处
《唐山学院学报》
2011年第6期13-16,共4页
Journal of Tangshan University
关键词
轧机
度法
分岔
主参数共振
rolling machine
the method of multiple scales
bifurcation
primary parameter resonance