期刊文献+

基于PDMS的人工视网膜神经微电极阵列 被引量:2

PDMS-Based Neural Microelectrode Arrays for Retinal Prosthesis
下载PDF
导出
摘要 为了利用柔顺性材料实现电极位点与靶细胞的良好接触,同时保证微电极的可靠性,提出了一种新的聚二甲基硅氧烷(PDMS)微电极制作方法.该方法通过在硅基表面沉积金属层、光刻图形化以及电镀形成电极基本结构,然后通过PDMS浇注、湿法刻蚀、释放以及键合完成基于PDMS微电极制作.其中,微电极绝缘层制作和电极位点暴露采用浇注PDMS并结合外力夹压固化和PDMS湿法刻蚀来实现.使用该方法制作的PDMS电极,结构稳定、可靠性好,具有良好的贴附性.同时,通过SEM和阻抗测试对所制作的微电极进行了表面形貌和电学性能的测试和评价.结果显示,相对于传统方法制作的PDMS微电极,电化学阻抗降低了近60%(频率1 kHz处),基于该方法制作的PDMS微电极在力学和电学性能方面均具明显优势. In order to improve the contact between electrode sites and target neurons by using conformable substrates,and meanwhile ensure the reliability of the microelectrode arrays,a new method for fabricating crack-free polydimethylsiloxane(PDMS)-based microelectrode arrays(MEAs) was presented.The device is constructed by depositing,patterning and electroplating gold to form wires and electrode sites on silicon wafer,and then embedding the wires in PDMS,exposing the electrode sites and bonding the second PDMS layer for bottom insulation.The embedding and exposing process involves pouring PDMS on the electroplated metal microstructures,curing with clamping and wet etching PDMS residues.In this way reliable and robust conformable MEAs were achieved.Prototype MEAs were also tested and evaluated by SEM and impedance test.The experimental results show,compared with conventional PDMS-based MEAs,the electro-chemical impedance decreases by 60%.The PDMS-based MEAs fabricated by the method proposed in this paper exhibite obvious advantages in mechanical and electrical properties.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第11期1731-1736,共6页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展计划(973)项目(2011CB707505) 国家高技术研究发展计划(863)项目(2009AA04Z326) 国家自然科学基金资助项目(30872629) 上海市自然科学基金(10ZR1436200) 上海-应用材料研究与发展基金(08520740300)
关键词 微电极阵列 聚二甲基硅氧烷 电镀 人工视网膜 microelectrode array polydimethylsiloxane(PDMS) electroplated retinal prosthesis
  • 相关文献

参考文献11

  • 1Dowling J. Artificial human vision[J]. Expert Review of Medical Devices, 2005, 2(1): 73-85.
  • 2Stieglitz T, Beutel H, Schuettler M, etal. Microma chined, polyimide-based devices for flexible neural in terfaces[J]. Biomedical microdevices, 2000, 2 (4): 283-294.
  • 3周洪波,李刚,张华,孙晓娜,姚源,金庆辉,赵建龙,任秋实.简易低成本柔性神经微电极制作方法[J].光学精密工程,2007,15(7):1056-1063. 被引量:12
  • 4Rodger D C, Fong A J, Wen L, et al. Flexible parylene based multieleetrode array technology for high density neural stimulation and recording[J]. Sensors and Actuators B-Chemical, 2008, 132 ( 2 ) : 449-460.
  • 5Yu Z, Tsay C, Lacour S, et al. Stretchable micro-- electrode arrays: A tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics [ C]// Conf Proc IEEE Eng Med Biol Soc. N J: IEEE Press, 2006, 6732-6735.
  • 6Meacham K W, Giuly R J, Guo L, et al. A litho- graphically patterned, elastic multi-electrode array for surface stimulation of the spinal cord[J]. Biomedical microdeviees, 2008, 10(2): 259-269.
  • 7Baek J Y, Kwon G H, Kim J Y, et al. Stable deposi- tion and patterning of metal layers on the PDMS sub strate and characterization for the development of the flexible and implantable micro electrode[J]. Diffusion and Defect Data. Solid State Data. Part B, Solid State Phenomena, 2007, 124-126: 165-168.
  • 8Balakrisnan B, Patil S, Smela E. Patterning PDMS using a combination of wet and dry etching[J]. Jour- nal of Micromechanics and Microengineering, 2009, 19(4) : 47002-47008.
  • 9Sharma V, Dhayal M, Govind, etal. Surface charac terization of plasma-treated and PEG-grafted PDMS for micro fluidic applications[J]. Vacuum, 2007, 81 (9) : 1094-1100.
  • 10孙晓娜,李刚,朱壮晖,周洪波,赵建龙,任秋实.丘形柔性神经微刺激电极阵列[J].光学精密工程,2009,17(9):2176-2183. 被引量:8

二级参考文献40

  • 1周洪波,李刚,张华,孙晓娜,姚源,金庆辉,赵建龙,任秋实.简易低成本柔性神经微电极制作方法[J].光学精密工程,2007,15(7):1056-1063. 被引量:12
  • 2周洪波,李刚,金庆辉,赵建龙,任秋实.植入式双面柔性神经微电极制作方法的研究[J].微细加工技术,2007(3):54-59. 被引量:7
  • 3WILSON B S, LAWSON D T, MUI.LER J M, et al.. Cochlear implants some likely next steps[J]. Annual Reviews in Biomedical Engineering, 2003, 5(1) :207-249.
  • 4WEILAND J D, LIU W, HUMAYUN M S. Reti nal prosthesis [J]. Annu. Rev. Biomed Eng. , 2005,7 : 361-401.
  • 5NAVARRO X, KRUEGER T B, LAGO N, etal.. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems[J]. Journal of the Peripheral Nervous System , 2005,10(3) :229-258.
  • 6MOTTA PS, JUDY JW. Muhielectrode micro probes for deep-brain stimulation fabricated with a customizable 3-D electroplating process[J].IEEE Transactions on Biomedical Engineering, 2005,52 (5) :923-933.
  • 7BRANNER A, NORMANN R A. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats[J]. Brain Research Bulletin, 2000,51(4) :293-306.
  • 8MINO H, RUBINSTEIN J T, MILLER C A, ABBAS P J. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation [J]. IEEE Transactions on Biomedical Engineering,2004,51(1) :13-20.
  • 9MERRILL D R, BIKSON M, JEFFERYS J G R. Electrical stimulation of excitable tissue: design of efficacious and safe protocols[J]. Journal of Neuroscience Metkods, 2005,141(2) :171-198.
  • 10METZ S, HEUSCHKEL M O, VALENCIA AVILA B, et al.. Microelectrodes with three-dimensional structures for improved neural interfacing [C]. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 2001 : 765- 768.

共引文献17

同被引文献36

  • 1邹绍芳,范影乐,王平.基于微电极阵列的自动环境监测电子舌的设计[J].仪器仪表学报,2007,28(9):1641-1645. 被引量:8
  • 2Pang C, Lee C, Suh K Y. Recent Advances in Flexible Sensors For Wearable and Implantable Devices [J]. Journal of Applied Polymer Science, 2013,130(3) : 1429-1441.
  • 3Kim B Y S,Rutka J T,Chan W C W. Nanomedicine[J]. New Eng- land Journal of Medicine, 2010,363 (25) :2434-2443.
  • 4Lee Y S, Wise K D. A Batch-Fabricated Silicon Capacitive Pres- sure Transducer with Low Temperature Sensitivity [J]. Electron Devices, IEEE Transactions on, 1982,29 ( 1 ) :42-48.
  • 5Summinto J, Yeh G, Spera T, et al. Silicon Diaphragm Capacitive Sensor for Pressure, Acceleration, Altitude Measurements [C]// IEEE Intl Conf on Solid-State Sensors and Actuators (Transduc- ers' 87), 1987 : 2-5.
  • 6Chavan A V, Wise K D. Batch-Processed Vacuum-Sealed Capaci- tive Pressure Sensors [J]. Journal of Microelectromechanical Sys- tems, 2001,10(4) : 580-588.
  • 7Haque R M, Wise K D. An Intraocular Pressure Sensor Based on a Glass Reflow Process [C ]//Solid-State Sensors, Actuators, and Microsystems Workshop. 2010: 49-52.
  • 8Chen P J, Rodger D C, Saati S, et al. Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors [ J ]. Journal of Microelectromechanical Systems, 2008, 17 (6) : 1342- 1351.
  • 9Chitnis G, Maleki T, Samuels B, et al. A Minimally Invasive Implantable Wireless Pressure Sensor for Continuous IOP Moni- toring [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(1) :250-256.
  • 10Shahiri-Tabarestani M, Ganji B A, SabbaghioNadooshan R. Design and Simulation of New Micro-Electromeehanieal Pressure Sensor For Measuring Intraocular Pressure [C]//Electrotechnical Confer- enee(MELECON), 2012 16th IEEE Mediterranean. IEEE, 2012: 208-211.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部