期刊文献+

In situ nanoscale refinement by highly controllable etching of the(111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire 被引量:1

In situ nanoscale refinement by highly controllable etching of the(111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire
原文传递
导出
摘要 Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 ℃ to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm- wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields. Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 ℃ to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm- wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第12期53-57,共5页 半导体学报(英文版)
基金 Project supported by the State Key Development Program for Basic Research of China(No.2006CB300403) the National Hi-Tech Research and Development Program of China(No.2007AA03Z308) the Fund for Creative Research of the National Natural Science Foundation of China(No.60721004)
关键词 TMAH etching nanofabrication silicon nanowire field effect transistor TMAH etching nanofabrication silicon nanowire field effect transistor
  • 相关文献

参考文献1

共引文献50

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部