期刊文献+

具有特殊压力含有源项一维可压Euler方程组的弱解存在性

Global Weak Solution to a System of the Compressible Euler Equation with a Special Pressure and a Source
下载PDF
导出
摘要 研究一类双曲系统——具有特殊压力含有源项的一维可压Euler方程组的Cauchy问题,应用补偿紧性理论和最大值原理,得到其有界弱解的整体存在性结果。所研究系统的齐次形式是1858年Earnshaw在研究等熵流体时第一次被推导出来,同时也被称为一位可压流的Euler方程组。其中的关键是用最大值原理得到相应的抛物方程组解的L∞估计,同时举出满足定理1条件(C1)–(C3)的一些具体源项。 The maximum principle and the theory of compensated compactness are applied to establish an existence theorem for global weak solutions to the Cauchy problem of the non-strictly hyperbolic system—a system of the compressible Euler equation with a special pressure and a source.Homogeneous system of this system was first derived by Earnshaw S.in 1858 for isentropic ow and is also called the Euler equations of one-dimensional compressible uid ow.The key is to obtain a priori-L∞estimate for solutions of the Cauchy problem for the related parabolic system by using the maximum principle and give some source terms satisfying the conditions(C1)–(C3) of Theorem 1.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期23-29,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 安徽医科大学博士科研资助项目(XJ201022) 南京航空航天大学杰出人才基金资助项目(1008-904319) 安徽省教育厅自然科学基金重点资助项目(KJ2007A003)
关键词 补偿紧性理论 最大值原理 弱解 熵-熵流对 Dirac测度 theory of compensated compactness maximum principle weak solution entropy–entropy ux pair Dirac measure
  • 相关文献

参考文献13

  • 1LIU T P. Nonlinear stability and instability of transonic flows through a nozzle [J]. Comm Math Phys, 1982, 83 (2) :243 -260.
  • 2WHITHAM G B. Linear and nonlinear waves [ M ]. New York: John Wiley and Sons, 1973.
  • 3EARNSHAW S. On the mathematical theory of sound [J]. Philos Trans, 1858, 150(5) :1150- 1154.
  • 4DIPERNA R J. Global solutions to a class of nonlinear hyperbolic systems of equations [ J ]. Comm Pure Appl Math, 1973, 26(1) :1 -28.
  • 5LU Y G. Convergence of the viscosity method for non- strictly hyperbolic conservation laws [ J ]. Comm Math Phys, 1992, 150(1):59-64.
  • 6LU Y G. Existence of global entropy solutions to a non- strictly hyperbolic system [ J ]. Arch Rat Mech Anal, 2005,178 (2) :287 -299.
  • 7LU Y G. Hyperbolic Conservation Laws and the Compen- sated Compactness Method [ M ]. New York : Chapman and Hall, CRC Press, 2002.
  • 8LIU T P. Quasilinear hyperbolic systems [ J ]. Comm Math Phys, 1979, 68 (2) :141 - 172.
  • 9DING X X, CHEN G Q, LUO P Z. Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics [ J ]. Comm Math Phys, 1989,121 (1) :63 -84.
  • 10CHEN G Q, GLIMM J. Global solutions to the compres- sible Euler equations with geometric structure [ J ]. Comm Math Phys, 1996,180 (1) :153 -193.

二级参考文献6

  • 1陈云光,Proc Roy Soc of Edinburgh A,1993年,123卷,231页
  • 2陈云光,Proc Roy Soc of Edinburgh A,1992年,120卷,349页
  • 3陆云光,Applicable Analysis,1989年,31卷,4期,239页
  • 4陈贵强,科学通报,1988年,33卷,9期,641页
  • 5Ding Xiaxi,Acta Math Sci,1985年,5卷,4期,415页
  • 6陈云光

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部