摘要
研究一类双曲系统——具有特殊压力含有源项的一维可压Euler方程组的Cauchy问题,应用补偿紧性理论和最大值原理,得到其有界弱解的整体存在性结果。所研究系统的齐次形式是1858年Earnshaw在研究等熵流体时第一次被推导出来,同时也被称为一位可压流的Euler方程组。其中的关键是用最大值原理得到相应的抛物方程组解的L∞估计,同时举出满足定理1条件(C1)–(C3)的一些具体源项。
The maximum principle and the theory of compensated compactness are applied to establish an existence theorem for global weak solutions to the Cauchy problem of the non-strictly hyperbolic system—a system of the compressible Euler equation with a special pressure and a source.Homogeneous system of this system was first derived by Earnshaw S.in 1858 for isentropic ow and is also called the Euler equations of one-dimensional compressible uid ow.The key is to obtain a priori-L∞estimate for solutions of the Cauchy problem for the related parabolic system by using the maximum principle and give some source terms satisfying the conditions(C1)–(C3) of Theorem 1.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第6期23-29,共7页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
安徽医科大学博士科研资助项目(XJ201022)
南京航空航天大学杰出人才基金资助项目(1008-904319)
安徽省教育厅自然科学基金重点资助项目(KJ2007A003)
关键词
补偿紧性理论
最大值原理
弱解
熵-熵流对
Dirac测度
theory of compensated compactness
maximum principle
weak solution
entropy–entropy ux pair
Dirac measure