摘要
相变和临界现象在自然界普遍存在,研究的主要手段是重整化群理论。随着计算机技术的发展,基于重整化群思想的数值模拟也得到了广泛的应用,它能够精确地计算系统处于临界状态时的物理参数。该文采用角转移矩阵重化群方法计算了无外场二维伊辛模型的临界耦合常数,得到了准确度为10-5的数值计算结果。
Renormalization group(RG) theory is a very important theory to research phase transition and critical phenomenon.With the development of the computing technology,numerical simulation methods based on the RG are used to compute the physical parameters.The corner transfer matrix renormalization group(CTMRG) method can get high precision results even if the physical system is in the critical status.CTMRG method is used to find the critical point of the two-dimensional Ising model.The numerical critical coupling constant is consistent with the exact result with good precision(10-5).
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第6期30-34,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家重点基础研究发展计划(2007CB935501)
关键词
角转移矩阵重整化群
二维伊辛模型
临界点
corner transfer matrix renormalization group
two-dimensional Ising model
critical point