期刊文献+

时标上一类时滞捕食系统周期解的存在性

Existence of Periodic Solutions for a Predator-prey System with Time Delays on Time Scales
下载PDF
导出
摘要 在时标理论和拓扑度理论基础之上,通过应用重合度理论的连续定理和一些时标上积分不等式技巧,给出了时标上一类具有可变时滞的非自治捕食者-食饵系统周期解存在性的充分条件。取得的结果在生态管理中具有现实意义和应用价值。 Based on the theory of the time scales and topological degree theory, by using continuation theorem of coincidence degree theory and some skills of integral inequalities on time scales, the sufficient condition of the existence of periodic solutions for a non-autonomous predator-prey system with time delays on time scales is obtained. The obtained result has practical significance and application value in ecological management.
作者 王斌
出处 《兴义民族师范学院学报》 2011年第4期102-106,共5页 Journal of Minzu Normal University of Xingyi
关键词 时标 时滞 周期解 重合度理论 time scales time delays periodic solutions coincidence degree theory.
  • 相关文献

参考文献18

二级参考文献73

  • 1张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 2Huo H. Periodic solutions for a semi-ratio-dependent predator-prey system with functional responses[J]. Appl Math Letters,2005.18(3):313-320.
  • 3Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Springer, Berlin,1977.
  • 4Leslie P H, Gower J C, The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrika, 1960,47 : 219-234.
  • 5Wang Q, Fan M. Wang K. Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functionalresponses[J]. J Math Anal Appl,2003.278(2):443-471.
  • 6Bohner M, Fan M, Zhang J. Existence of periodic solutions in predator-prey and competition dynamic systems[J]. Nonlinear Analysis : Real World Applications ,2006,7(5): 1193-1204.
  • 7Freedman H I. Deterministic Mathematical Models in Population Ecology [M ]. Monograph Textbooks Pure Applied Math, Marcel Dekker, New York, 1980,57.
  • 8Fazly M, Hesaaraki M. Periodic solutions for a discrete time predator-prey system with monotone functional responses[J]. C R Acad Sci Paris, Set I,2007,345(4):199-202.
  • 9Ding X, Lu C, Liu M. Periodic solutions for a semi-ratio-dependenl predator-prey system with nonmonotonic functional response and time delay[J]. Nonlinear Analysis: Real World Applications.2008,9(3):762-775.
  • 10Fan Meng, Kuang Yang. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response [J]. JMath Anal Appl, 2004, 295 ( 1 ) : 15- 39.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部