期刊文献+

一种新的兼类文本分类方法 被引量:1

New Multi-label Text Classification Algorithm
下载PDF
导出
摘要 提出了一种基于超椭球的兼类文本分类算法。对每一类样本,在特征空间求得一个包围该类样本的最小超椭球,使得各类样本之间通过超椭球隔开。对待分类样本,通过判断其是否在超椭球内确定其类别。若没有超椭球包围待分类样本,则通过隶属度确定其所属类别。在标准数据集Reuters 21578上的实验结果表明,该方法较超球方法提高了分类精度和分类速度。 A new multi-label text classification algorithm based on hyper ellipsoidal was proposed in this paper.For every class,the smallest hyper ellipsoidal that contains the samples of the class is structured,which can divide the class samples from others.For the sample to be classified,its class is confirmed by the hyper ellipsoidal that surrounds it.If the sample is not surrounded by any hyper ellipsoidal,the membership is used to confirmed its class.The experiments were done on Reuters 21578 and the experiment results show that the algorithm has a higher performance on classification speed and classification precision compare with hyper sphere algorithm.
出处 《计算机科学》 CSCD 北大核心 2011年第11期204-205,224,共3页 Computer Science
基金 国家自然科学基金项目(60603023) 国家基础研究重大项目(973)研究专项(2001CCA00700) 辽宁省教育厅重点实验室项目(LS2010180)资助
关键词 超椭球 兼类分类 缩放因子 隶属度 Hyper ellipsoidal Multi-label classification Extension factor Membership
  • 相关文献

参考文献12

  • 1Yang Yi-ming. An Evaluation of Statistical Approaches to Text Categorization[J]. Journal of Information Retrieval, 1999 ( 1 ) : 69-90.
  • 2Mecallum A, Nigam K. A Comparison of Event Models for Nai ve Bayes Text Classification[C] // AAAI Workshop on Learning for Text Categorization. Madison, 1998 : 509-516.
  • 3Han J, Kamber M. Data Mining : Concepts and Techniques[ M]. Beijing .. Higher Education Press, 2001.
  • 4林士敏,田凤占,陆玉昌.贝叶斯学习、贝叶斯网络与数据采掘[J].计算机科学,2000,27(10):69-72. 被引量:34
  • 5Takahashi F, Abe S, Decision-Tree-Based Multiclass Support Vee tor Machines[C]//International Conference on Neural Information Processing. Singapore, 2002 :1418-1422.
  • 6Platt J, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Multiclass Classification[C]//Advances in Neural Information Processing Systems. Cambridge, MA; MIT Press, 2000 : 547 553.
  • 7Tax D,Duin R. Uniform Object Generation for Optimizing Oneclass Classifiers[J]. Journal of Machine Learning Research, 2001 (2):155-173.
  • 8王晔,黄上腾.基于支持向量机的文本兼类标注[J].计算机工程与应用,2006,42(2):182-185. 被引量:10
  • 9秦玉平,王秀坤,王春立.实现兼类样本类增量学习的一种算法[J].控制与决策,2009,24(1):137-140. 被引量:2
  • 10高俊祥,杜海清,刘勇.采用光照不变特征的椭球法运动阴影检测[J].北京邮电大学学报,2009,32(5):109-113. 被引量:4

二级参考文献37

共引文献50

同被引文献11

  • 1孙晋文,肖建国.基于SVM的中文文本分类反馈学习技术的研究[J].控制与决策,2004,19(8):927-930. 被引量:16
  • 2王晔,黄上腾.基于支持向量机的文本兼类标注[J].计算机工程与应用,2006,42(2):182-185. 被引量:10
  • 3Vapnik V. The Nature of Statistical I.earning Theory [M]. New York:Springer, 1995.
  • 4Joachims T. Text Categorization with Support Vector Ma- chines:Learning with Many Relevant Feature [ A] // Procee- dings of ECML-98, 10th European Conference on Machine Learning[C]. Berlin Springer, 1998 .. 137-142.
  • 5Bennett K P. Combining Support Vector and Mathematical Pro- gramming Methods for Classification[A]//Advances in Kernel MethodsSupport Vector Learning[C]. Cambridge, MA: MIT press, 1999 307-326.
  • 6Krebel U G. Pairwise Classification and Support Vector Ma- chines [A] ff Advances in Kernel Methods: Support Vector Learning[C]. Cambridge, MA: MIT press, 1999 : 255-268.
  • 7Platt J C, Cristianini N, Shawe-Taylor J. Large Margin DAGs for multielass elassifieation[A] ff Advances in Neural Informa- tion Processing Systems[C]. Cambridge, MA: MIT Press, 2000 547-553.
  • 8Wei X K, Huang G ]3. Mahalanobis Eillpsoidal Learning Ma- chine for One Class Classifieatian[C] ff International Conference on Machine Learning and Cybernetics. 2007 3528-3533.
  • 9秦玉平,王秀坤,李祥纳,王春立.基于超球支持向量机的兼类文本分类算法研究[J].计算机工程与应用,2008,44(19):166-168. 被引量:2
  • 10李建民,李永新,薛贞霞.基于马氏椭球学习机的监督野点探测[J].计算机工程与应用,2009,45(13):200-202. 被引量:3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部