期刊文献+

基于混沌神经网络的异步电主轴转速辨识

Electro-spindle speed identifier based on chaos-BP algorithm
下载PDF
导出
摘要 针对BP神经网络易陷于局部最优,且学习速度慢的缺陷,研究了采用混沌优化算法改进BP神经网络并应用于异步电主轴转速辨识的方法。该方法使用新的混沌自映射函数取代一般的有限折叠次数的Logistic自映射函数,使其兼具了混沌优化算法的全局寻优与BP算法局部寻优的优点。借助MATLAB/Simulink软件对无传感器电主轴转速辨识系统进行数值仿真。仿真结果表明,采用新方法使整个系统的辨识性能更优,学习速度更快。 BP neural network is easy to plunge into local solution and has slow learning convergence speed,a new chaos optimization algorithm was investigated. A new chaotic self-map is applied to replace the Logistic chaotic self-map with finite collapse and it realized the combination of chaos' global search capability and BP's local optimize performance. The new algorithm applied in electro-spindle was carried out by simulation experiment using MATLAB/simulink. The numerical results show that speed identification system has not only the advantage of accurate identification, but also the virtue of quick learning convergence speed adopted the new algorithm.
出处 《现代制造工程》 CSCD 北大核心 2011年第12期18-23,共6页 Modern Manufacturing Engineering
基金 国家863计划资助项目(2009AA11Z211) 上海市教委重点学科建设项目(J50503)
关键词 转速辨识 混沌优化算法 BP神经网络 异步电主轴 speed identification chaos optimization algorithm BP neural network electro-spindle
  • 相关文献

参考文献15

  • 1Bodkhe S B, Aware M V. Speed-sensorless, adjustable-speed induction motor drive based on DC link measurement [ J ]. International Journal of Physical Sciences, 2009, 4 ( 4 ) : 221 - 232.
  • 2Casadei D, Serra G, Tani A, et al. Performance analysis of a speed-sensorless induction motor drive based on a constant- switching-frequency DTC scheme [ J ]. Industry Applica- tions, IEEE Transactions on,2003,39 (2) :476 - 484.
  • 3Ramadas G, Thyagarajan T, Subrahmanyam V. Robust Per- formance of Induction Motor Drives [ J ]. International Journal of Recent Trends in Engineering,2009,1 (3) :25 - 29.
  • 4王庆龙,张崇巍,张兴.基于变结构MRAS辨识转速永磁电机矢量控制系统[J].系统仿真学报,2007,19(22):5230-5233. 被引量:9
  • 5Barut Murat, Bogosyan Seta. An EKF-based estimator for the speed sensorless vector control of induction motors [ J ]. Elec- tric Power Components and Systems, 2005,33 ( 7 ) : 727 - 744.
  • 6Cirrincione M, Pucci M. An MRAS-based sensorless high- performance induction motor drive with a predictive adaptive model [ J ]. Industrial Electronics, IEEE Transactions on, 2005,52(2) :532-551.
  • 7Kowalska Orlowska T. Improved MRAS-type speed estimator for the sensorless induction motor drive [ J ]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2007,26 (4) : 1161 - 1174.
  • 8Brahim Ben L. Motor speed identification via neural networks [ J]. Industry Applications Magazine, IEEE, 1995, 1 ( 1 ) : 28 - 32.
  • 9Oh W S, Cho K M, Kim S, et al. Optimzed neural network speed control of induction motor using genetic algorithm [ C ]. International Symposium on Power Electronics, Electri- cal Drives, Automation and Motion, Taormina, Italy,2006.
  • 10Duh Fun-Bin, Lin Chin-Teng. Tracking a maneuvering tar- get using neural fuzzy network [ J ]. Systems, Man, and Cy- bernetics, Part B : Cybernetics, IEEE Transactions on,2004, 34 (1) :16 -33.

二级参考文献37

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部