摘要
针对BP神经网络易陷于局部最优,且学习速度慢的缺陷,研究了采用混沌优化算法改进BP神经网络并应用于异步电主轴转速辨识的方法。该方法使用新的混沌自映射函数取代一般的有限折叠次数的Logistic自映射函数,使其兼具了混沌优化算法的全局寻优与BP算法局部寻优的优点。借助MATLAB/Simulink软件对无传感器电主轴转速辨识系统进行数值仿真。仿真结果表明,采用新方法使整个系统的辨识性能更优,学习速度更快。
BP neural network is easy to plunge into local solution and has slow learning convergence speed,a new chaos optimization algorithm was investigated. A new chaotic self-map is applied to replace the Logistic chaotic self-map with finite collapse and it realized the combination of chaos' global search capability and BP's local optimize performance. The new algorithm applied in electro-spindle was carried out by simulation experiment using MATLAB/simulink. The numerical results show that speed identification system has not only the advantage of accurate identification, but also the virtue of quick learning convergence speed adopted the new algorithm.
出处
《现代制造工程》
CSCD
北大核心
2011年第12期18-23,共6页
Modern Manufacturing Engineering
基金
国家863计划资助项目(2009AA11Z211)
上海市教委重点学科建设项目(J50503)
关键词
转速辨识
混沌优化算法
BP神经网络
异步电主轴
speed identification
chaos optimization algorithm
BP neural network
electro-spindle