期刊文献+

钢管混凝土拱桥安全性评价的SVM机器模型 被引量:1

Safety evaluation of concrete filled steel tube arch bridge based on support vector machine
下载PDF
导出
摘要 从影响钢管混凝土拱桥安全性的承载能力、承重构件损伤以及外观损伤等3个主要方面进行考虑,建立高度非线性的输入与输出的映射关系。引入SVM方法,建立了钢管混凝土拱桥安全性评价的SVM机器模型。通过仿真得到桥梁承载能力、承重构件损伤、外观损伤以及成桥状态下最终的安全性信息。将建立的模型应用到实际桥分析中,较好地评价了钢管混凝土拱桥结构的安全性状况。 To gain the result of the safety assessment of CFST arch bridge,based on the traditional safety evaluation methods,a support vector machine model of safety evaluation method was presented.With consideration of several key factors which affect the whole safety state such as load bearing capability,damage of bearing component and damaged state of appearance,a support vector machine model were established and trained by checking samples gained from the data measured on the spot.Finally,the whole safety evaluation of load bearing capability,damage of bearing component,damaged state of appearance and completed state of arch bridge were gotten by the method of simulation.The result of safety evaluation one practical Bridge shows that the approach is highly potential and practical to evaluate the safety of long-span concrete filled steel tube arch bridge.
出处 《混凝土》 CAS CSCD 北大核心 2011年第11期8-10,共3页 Concrete
关键词 桥梁工程 钢管混凝土拱桥 安全性评价 支持向量机 bridge engineering CFST arch bridge safety assessment support vector machine model
  • 相关文献

参考文献7

二级参考文献36

  • 1中国公路学会和结构工程学会.1996年桥梁学术讨论会论文集[M].北京:人民交通出版社,1996..
  • 2[1]Rui Y,Huang T S,Ortega M,et al.Relevance feedback: A power tool in int eractive content-based image retrieval [J].IEEE Trans on Circuits and Syst fo r Video Tech,1998,8(5): 644-655.
  • 3[2]Rui Y,Huang T S.A novel relevance feedback technique in image retrieval [A].Proc 7th ACM Int Conf on Multimedia (part 2) [C].Orlando,Florida,199 9.67-70.
  • 4[3]Ishikawa Y,Subramanya R,Faloutsos C.Mindreader: Query Databases Through Multiple Examples [A].Proc 24th Int Conf on Very Large Databases [C].New York,1998.218-227.
  • 5[4]Vapnik V.The Nature of Statistical Learning Theory [M].New York: Sprin ger Verlag,1995.
  • 6[5]Burges C J C.A tutorial on support vector machines for pattern recognitio n [J].Data Mining and Knowledge Discovery,1998,2(2): 1-47.
  • 7[6]Osuna E.Applying SVMs to face detection [J].IEEE Intelligent Systems,1998,13(4): 23-26.
  • 8[7]Chapelle O,Haffner P,Vapnik V.Support vector machines for histogram-bas ed image classification [J].IEEE Trans on neural networks,1999,10(5): 1057 -1064.
  • 9[8]Huang J,Kumar S R,Mitra M,et al.Image indexing using color correlogram s [A].Proc.of IEEE conf.on Computer Vision and Pattern Recognition [C].S an Juan,Puerto Rico,1997.762-768.
  • 10[1]Frawley W, Piatesky-Shapiro G, Matheus C. Knowledge discovery in databases: An overview[A]. Piatesky-shapiro G, Frawley W. Knowledge discovery in Databases[C]. Menlo Park CA:AAAI/MIT Press,1991.

共引文献132

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部