期刊文献+

SHP-VI:一种基于最短哈密顿通路的POMDP值迭代算法 被引量:1

SHP-VI: A Shortest Hamiltonian Path-Based POMDP Value Iteration Algorithm
下载PDF
导出
摘要 基于试探(trial-based)的值迭代算法是求解部分可观察Markov决策过程(partially observable Markov decision process,POMDP)模型的一类有效算法,其中FSVI算法是目前最快的算法之一.然而对于较大规模的POMDP问题,FSVI计算MDP值函数的时间是不容忽视的.提出一种基于最短哈密顿通路(shortest Hamiltonian path)的值迭代算法(shortest Hamiltonian path-based value iteration,SHP-VI).该方法用求解最短哈密顿通路问题的蚁群算法计算一条最优信念状态轨迹,然后在这些信念状态上反向更新值函数.通过与FSVI算法的实验比较,结果表明SHP-VI算法很大程度地提高了基于试探的算法计算信念状态轨迹的效率. Trial-based value iteration is a class of efficient algorithms to solve partially observable Markov decision process (POMDP), among which FSVI is one of the fastest algorithms. But the overhead of computing MDP value function by FSVI is not negligible for large-scale POMDP problems. In this paper, we propose a new value iteration method based on the shortest Hamiltonian path (shortest Hamiltonian path-based value iteration, SHP-VI). This method explores an optimal belief trajectory using the shortest Hamiltonian path resulting from ant colony optimization, and updates value function over the encountered belief states in reversed order. Compared with FSVI, the experimental results show that SHP-VI accelerates the computation of belief trajectory greatly in trial-based algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第12期2343-2351,共9页 Journal of Computer Research and Development
基金 国家科技重大专项基金项目(2009ZX10005-019) 国家"九七三"重点基础研究发展计划基金项目(2006CB504601) 国家科技支撑计划基金项目(2007BAI10B06-01) 北京市科委科研攻关基金项目(D08050703020803 D08050703020804)
关键词 部分可观察Markov决策过程 值迭代 基于点的算法 基于试探的算法 哈密顿通路 partially observable Markov decision process (POMDP) value iteration point-based algorithm trial-based algorithm Hamiltonian path
  • 相关文献

参考文献18

  • 1Sondik E J. The optimal control of partially observable Markov processes [D]. Stanford, CA: Stanford University, 1971.
  • 2Sondik E J. The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs [J]. Operations Research, 1978, 26(2): 282-304.
  • 3Kaelbling I. P, Littman M L, Cassandra A R. Planning and acting in partially observable stochastic domains [J]. Artificial Intelligence, 1998, 101(1/2): 99-134.
  • 4Smith T. Probabilistic planning for robotic exploration [D]. Pittsburgh, PA: Carnegie Mellon University, 2007.
  • 5Hauskreeht M, Fraser H. Planning treatment of isehemic heart disease with partially observable Markov decision processes [J]. Artificial Intelligence in Medicine, 2000, 18 (3) : 221-244.
  • 6张波,蔡庆生,郭百宁.口语对话系统的POMDP模型及求解[J].计算机研究与发展,2002,39(2):217-224. 被引量:7
  • 7Pineau J, Gordon G, Thrun S. Point-based value iteration: An anytime algorithm for POMDPs [C]//Proc of the 18th Int Joint Conf on Artificial Intelligence (IJCAI). San Francisco: Morgan Kaufmann, 2003: 1025-1030.
  • 8Spaan, M T J, Vlassis N. Perseus: Randomized point-based value Iteration for POMDPs [J]. Journal of Artificial Intelligence Research, 2005, 24(1) : 195-220.
  • 9卞爱华,王崇骏,陈世福.基于点的POMDP算法的预处理方法[J].软件学报,2008,19(6):1309-1316. 被引量:6
  • 10Izadi M T, Precup D. Exploration in POMDP belief space and its impact on value iteration approximation[C]//Proc of the 17th European Conf on Artificial Intelligence (ECAI). Amsterdam: IOS, 2006.

二级参考文献11

  • 1周继恩,刘贵全,张春阳,蔡庆生.基于内部信念状态POMDP模型在用户兴趣获取中的应用[J].小型微型计算机系统,2004,25(11):1979-1983. 被引量:5
  • 2陈茂,陈小平.基于采样的POMDP近似算法[J].计算机仿真,2006,23(5):64-67. 被引量:2
  • 3[1]M A Walker. An application of reinforcement learning to dialogue strategy selection in a spoken dialogue system for email. Journal of Artificial Intelligence Research, 2000, 12: 387~416
  • 4[2]E Levin, R Pieraccini, W Eckert. Using Markov decision process for learning dialogue strategies. In: Proc of Int'l Conf on Acoustics, Speech, and Signal Processing (ICASSP-97). Munich, Germany, 1997
  • 5[3]T Paek, E Horvitz. Uncertainty, utility, and misunder-standing: A decision-theoretic perspective on grounding in conversational systems. AAAI Fall Symp on Psychological Models of Communication in Collaborative Systems. North Falmouth, Massachusetts, USA, 1999
  • 6[4]L P Kaelbling, M L Littman, A R Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 1998, 101: 99~134
  • 7[5]N Roy, J Pineau, S Thrun. Spoken dialogue management using probabilistic reasoning. In: Proc of the 38th Annual Meeting of the Association for Computational Linguistics (ACL-2000). Hong Kong, 2000
  • 8[6]M Hauskrecht. Value-function approximations for partially observable Markov decision problems. Journal of Artificial Intelligence Research, 2000, 13: 33~94
  • 9[7]C Boutilier, D Poole. Computing optimal policies for partially observable decision processes using compact representations. In: Proc of the 13th National Conf on Artificial Intelligence (AAAI-96). 1996. Portland, Oregon, USA, 1168~1175
  • 10[8]A Cassandra, M L Littman, N L Zhang. Incremental pruning: A simple, fast, exact algorithm for partially observable Markov decision processes. In: Proc of the 13th Annual Conf on Uncertainty in Artificial Intelligence (UAI-97). Providence, Rhode Island, USA, 1997. 54~61

共引文献10

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部