期刊文献+

基于RBF神经网络辨识氮爆式破碎器模型及其仿真

Identification and Simulation for Modeling of Nitrogen Explosion Breaker Based on RBF Neural Networks
下载PDF
导出
摘要 根据神经网络的辨识原理,建立用RBF神经网络辨识氮爆式破碎器模型的方法。利用辨识实验采集的输入输出数据,通过RBF中的最小均方(LMS)算法动态调整神经网络权值,使达到最佳效果。RBF神经网络辨识分为2步:第1步确定径向基核函数的中心c和宽度d,根据输入向量u的特点,确定隐含层神经元q的个数;第2步采用最小均方(LMS)方法,动态调整隐含层到输出层的权重,优化神经网络模型,并对建立的神经网络模型进行仿真。仿真结果表明:LMS算法具有良好的收敛性质,RBF神经网络模型较好的描述了氮爆式破碎器模型。 Based on the acquired-date of input and output, the model of nitrogen explosion breaker was established by using RBF neural network identification method. The weight vector of the neural network was adaptively adjusted by the least mean square (LMS) algorithm in order to achieve optimal results. The RBF identification was divided into two steps: First of all, the center (c) and width (d) of radial basis function was determined, and the number of Hidden layer neuron (q) was determined according to the characteristics of the input vector (u) ; Secondly, the weight vector of the hidden layer to output layer was adaptively adjusted by the LMS, and moreover the neural net- work modeling established was simulated in order to obtain optimized neural network model. The simulation results show the LMS is good of global convergence, the RBF Neural Network modeling is better description of the Nitrogen explosion breaker model.
作者 伍毅 杨玉杰
出处 《机械科学与技术》 CSCD 北大核心 2011年第12期2036-2039,共4页 Mechanical Science and Technology for Aerospace Engineering
关键词 氮爆式破碎器 系统辨识 RBF LMS算法 nitrogen explosion breaker system identification RBF LMS algorithm
  • 相关文献

参考文献4

二级参考文献20

  • 1谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 2王政欧,韩建勋,王康斌,张彐峰.神经网络在系统辩识中的应用研究[J].计算技术与自动化,1995,14(1):14-19. 被引量:7
  • 3杨熔,李永华,苏义鑫.用神经网络建立非线性系统模型研究[J].控制理论与应用,1995,12(1):81-86. 被引量:24
  • 4Narendra K S. Parthasarathy kIdentification and control of dynamical systems using neural networks [J]. IEEE Trans. On N.N. 1990, 1(1): 4-27.
  • 5Unnikrishnan K P.et. A correlation_based learning algorithm for feed- forward and recurrent neural network [J]. neural computation, 1994, 6: 469-490.
  • 6岑豫皖.宝山钢铁股份有限公司运输链电液比例系统仿真研究报告 [R].安徽:安徽工业大学,2003..
  • 7王永骥 涂健.神经元控制[M].北京:机械工业出版社,1998,2..
  • 8Kim M S, Higuchi T, Mizuno T, et al. Application of a Magnetic Bearing Spindle to Non--circular Fine Boring[C] //Proceeding of the Sixth International Symposium on Magnetic Bearings. Pennsylvania: TECHNOMIC PUBL CO, 1998: 22-31.
  • 9Gosiewski Z, Sawicki J T, Bischof K R. Control of Magnetic Bearing Spindles during N--waved Machining[C]//Proc. ASME Des. Eng. Tech. Conf. Pittsburgh: ASME, 2001: 3111-3118.
  • 10Ulbrich H, Althaus J. Actuator Design for Rotor ControI[C]//ASME Des. Eng. Div. Publ. DE. New York: ASME, 1989, 18-2.. 17-22.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部