期刊文献+

粒计算中粒度转换的运算符 被引量:3

Granularity Transformation Operators for Granular Computing
下载PDF
导出
摘要 粒计算三元论模型将现有粒计算研究成果的共性抽象出来,为问题求解提供了统一的方法论,而三元论模型是以多层次、多视角的粒结构为基础的。基于图的粒结构首先定义了图上的粒和层次,然后基于半序关系定义了图上的粒结构。在基于图的粒结构基础上,给出了实现不同粒度之间转换的"细化"、"粗化"运算符。"细化"运算处理从粗粒度到细粒度的转换,将粗粒度层次中的粒转换为细粒度层次中的粒,将粗粒度层次转换为细粒度层次。"粗化"运算处理从细粒度到粗粒度的转换,将细粒度层次中的粒转换为粗粒度层次中的粒,将细粒度层次转换为粗粒度层次。通过粒结构和"细化"、"粗化"运算,可以在不同的粒度上分析同一问题并使其在不同粒度之间自由转换。 The triarchic theory of granular computing offers a conceptual framework of granular computing. It empha- sized the exploitation of useful structures known as granular structures characterized by multilevel and multiview. The granular structures in graphs were studied, granules and levels in a graph were defined based on the vertices set, and granular structures in the graph were defined based on partial orders. Based on the granular structures in graphs, "zoo- ruing-in" and "zooming-out" operators were proposed. The "zooming-in" operator deals with the shift from a fine granu- larity to a coarse granularity and the "zooming-out" operator deals with the change from a coarse granularity to a fine granularity.
出处 《计算机科学》 CSCD 北大核心 2011年第12期209-212,共4页 Computer Science
基金 国家自然科学基金(60905027) 北京市自然科学基金(4102007)资助
关键词 粒结构 粒度转换 运算符 细化 粗化 Granular structures, Granularity transformation, Operator, Zooming-in, Zooming-out
  • 相关文献

参考文献16

  • 1Bargiela A, Pedrycz W. Granular computing: an introduction [M]. Kluwer Academic Publishers, Boston, 2002.
  • 2Chen G,Zhong N,Yao Y Y. Hypergraph model of granular computing [C]//Proceedings of the 2008 IEEE International Conference on Granular Computing. 2008:80-85.
  • 3Giunehglia F, Walsh T. A theory of abstraction [J].Artificial Intelligence, 1992,56 : 323-390.
  • 4Hohbs J R. Granularity [C]// Proceedings of the 9th International Joint Conference on Artificial Intelligence. 1985:432--435.
  • 5Hornsby K. Temporal zooming[J]. Transactions in GIS, 2001, 5 : 255-272.
  • 6McCalla G,Greer J, Barrie J, et al. Granularity hierarchies [J].Computers and Mathematics with Applications, 1992, 23: 363- 375.
  • 7苗多谦,王国胤,刘清,等.粒计算:过去现在与展望[M].北京:科学出版社,2007:1-20.
  • 8苗夺谦,范世栋.知识的粒度计算及其应用[J].系统工程理论与实践,2002,22(1):48-56. 被引量:175
  • 9Pawlak Z. Rough sets [J]. International Journal of Computer and Information Sciences, 1982,11 : 341-356.
  • 10Shafer G. A Mathematical Theory of Evidence [M]. Princeton University Press, Princeton, 1976.

共引文献174

同被引文献21

  • 1徐章艳,刘作鹏,杨炳儒,宋威.一个复杂度为max(O(|C||U|),O(|C^2|U/C|))的快速属性约简算法[J].计算机学报,2006,29(3):391-399. 被引量:234
  • 2Yiyu,(Y.Y.),Yao.Three Perspectives of Granular Computing[J].南昌工程学院学报,2006,25(2):16-21. 被引量:19
  • 3唐旭清,方雪松,朱平.基于模糊邻近关系的结构聚类[J].系统工程与理论实践,2010,30(11):1986-19976.
  • 4Perice A P, Dahleh M, Rabitz H. Optimal control of quantum- mechanical system:Existence,numerical approximation,and ap- plications[J]. Physical Review A, 1988,37 : 4960-4964.
  • 5D'Alessandro D, Dahleh M. Optimal Control of Two-Level Quantum Systems[J]. IEEE Trans. Automat. control, 2001,46 866-874.
  • 6Yao Yi-yu. Artificial Intelligence Perspectives on Granular Com- puting[J]. Intelligent Systems Reference Library, 2011,13 : 17 34.
  • 7Yao Yi-yu. Interpreting Concept Learning in Cognitive Infor: matics and Granular Computing [J]. Transactions on Systems, Man,and Cybernetics-part B: Cybernetics, 2009, 39 (4) : 855 866.
  • 8Panoutsos G, Mahfouf M. A Neural-fuzzy Modelling Framework Based on Granular Computing: Concepts and Applications [J]. Fuzzy Sets and Systems, 2010,161 (21) : 2808-2830.
  • 9Skowron A, Stepaniuk J, Swiniarski R. Modeling rough granular computing based on approximation spaces [J]. Irfformation Scien- ces, 2012,184(1) : 20-43.
  • 10Pedrycz W. The Design of Cognitive Maps:a Study in Synergy of Granular Computing and Evolutionary Optimization [J]. Expert Systems with Applications, 2010,37 (10) : 7288-7294.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部