摘要
粒计算三元论模型将现有粒计算研究成果的共性抽象出来,为问题求解提供了统一的方法论,而三元论模型是以多层次、多视角的粒结构为基础的。基于图的粒结构首先定义了图上的粒和层次,然后基于半序关系定义了图上的粒结构。在基于图的粒结构基础上,给出了实现不同粒度之间转换的"细化"、"粗化"运算符。"细化"运算处理从粗粒度到细粒度的转换,将粗粒度层次中的粒转换为细粒度层次中的粒,将粗粒度层次转换为细粒度层次。"粗化"运算处理从细粒度到粗粒度的转换,将细粒度层次中的粒转换为粗粒度层次中的粒,将细粒度层次转换为粗粒度层次。通过粒结构和"细化"、"粗化"运算,可以在不同的粒度上分析同一问题并使其在不同粒度之间自由转换。
The triarchic theory of granular computing offers a conceptual framework of granular computing. It empha- sized the exploitation of useful structures known as granular structures characterized by multilevel and multiview. The granular structures in graphs were studied, granules and levels in a graph were defined based on the vertices set, and granular structures in the graph were defined based on partial orders. Based on the granular structures in graphs, "zoo- ruing-in" and "zooming-out" operators were proposed. The "zooming-in" operator deals with the shift from a fine granu- larity to a coarse granularity and the "zooming-out" operator deals with the change from a coarse granularity to a fine granularity.
出处
《计算机科学》
CSCD
北大核心
2011年第12期209-212,共4页
Computer Science
基金
国家自然科学基金(60905027)
北京市自然科学基金(4102007)资助
关键词
粒结构
粒度转换
运算符
细化
粗化
Granular structures, Granularity transformation, Operator, Zooming-in, Zooming-out