期刊文献+

非自治Lotka-Volterra型竞争系统的一些新结果 被引量:3

Some New Results of Nonautonomous Lotka-Volterra N-species Competitive Systems
下载PDF
导出
摘要 研究一般非自治 Lotka-Volterra型 n个种群相互竞争生态系统的定性性质.建立了关于一部分种群灭绝,而另一部分种群一致持续生存与全局渐近稳定的一系列新的判别准则.这些结果改进和推广了文献[2,3]中的主要结果。 In this paper, we study the qualitative properties of general nonautonomous Lotka-Volterra N-species competitive systems. Some new criteria for the extinction of a part of species and the uniform persistence and global asymptotical stability of other part of species are established. These results improve and extend the recent ones obtained by Montes de Oca and Zeeman in [2,3].
作者 滕志东
机构地区 新疆大学数学系
出处 《生物数学学报》 CSCD 1999年第4期385-393,共9页 Journal of Biomathematics
关键词 灭绝 一致持续生存 全局渐近稳定 种群 生态系统 Extinction Uni-form persistence Globally asymptotical stability
  • 相关文献

同被引文献14

  • 1M. Braun, Differential Equations and their Applications, Springer - Verlag, New York, 1983.
  • 2P.A. Keddy,Competition, Chapman & Hall, London, 1989.
  • 3S. Ahmand, A.C. Lazer, Average growth and extinction in a competitive Lotka - Voherra system, Nonlinear Anal. ,62 (2005) 547-557.
  • 4S. Ahmad, A.C. Lazer, Necessary and sufficent average growth in a Lotka - Volterra system, Nonlinear Anal. , 34(1998) 191-228.
  • 5F. Montes De Oca, M.L. Zeeman, Balancing survival and extinction in a nonautonomous competitive Lotka - Volterra Systems, Math. Anal. Appl. 192 (1995) 360 - 370.
  • 6MUROYA Y. Permanence of nonautonomous Lotka- Volterra delay differential systems [J]. Applied Mathematics Letters, 2006, 19: 445-450.
  • 7HAN Wei, LIU Mao-xing. Stability and bifurcation analysis for a discrete-time model of Lotka-Volterra type with delay [J]. Applied Mathematics of Computation, 2001, 12: 5449-5457.
  • 8LU Gui-chen, LU Zheng-yi, LIAN Xin-ze. Delay effect on the permanence for Lotka-Volterra cooperative systems[J]. Nonlinear Analysis : Real Word Applications, 2010, 11(4): 2810-2816.
  • 9TENG Zhi-dong, LI Zhi-ming. Permanence and asymptotic behavior of the N-species nonautonomous Lotka-Volterra competitive systems[J]. Computers and Mathematics with Applications, 2000, 39: 107-116.
  • 10AHMAND S. Extinction of species nonautonomous Lotka Volterra systems[J]. Proc Amer Math Soc , 1999, 127: 2905-2910.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部