摘要
A novel technique of introducing gas bubble stirring during solidification was studied to prepare Al-Si semi-solid slurry. The microstructure evolution of the slurry during slow cooling process after stirring was investigated. The effects of the solidification rate on the microstructure of the semi-solid slurry were investigated under three different solidification conditions. The results show that fine non-dendritic slurry can be obtained using the gas bubble stirring method. Ripening and coarsening of primary Al grains are observed during the slow cooling process, and at last coarsened eutectic Si appears. Primary Al grains with different sizes and eutectic Si are obtained, corresponding to three different solidification rates.
A novel technique of introducing gas bubble stirring during solidification was studied to prepare Al-Si semi-solid slurry. The microstructure evolution of the slurry during slow cooling process after stirring was investigated. The effects of the solidification rate on the microstructure of the semi-solid slurry were investigated under three different solidification conditions. The results show that fine non-dendritic slurry can be obtained using the gas bubble stirring method. Ripening and coarsening of primary Al grains are observed during the slow cooling process, and at last coarsened eutectic Si appears. Primary Al grains with different sizes and eutectic Si are obtained, corresponding to three different solidification rates.
基金
Project(50775085)supported by the National Natural Science Foundation of China
Project(M2009061)supported by Special Fund for Basic Research and Operating Expenses of Central College,China
Project(2008A610049)supported by the Natural Science Foundation of Ningbo City,China