期刊文献+

最大度为5的可平面图是第一类的充分条件

A sufficient condition for a planar graph of maximum degree five to be class 1
下载PDF
导出
摘要 最大度是5的可平面图,既有第一类,也有第二类。该文运用Discharge方法以及临界图的一些重要性质证明,每个最大度为5且不含三圈或不含四圈或不含五圈的简单平面图的边色数等于5,即这样的平面图是第一类的。文中还给出了最大度为5的平面图分类的一个特征刻画。 Both class 1 and class 2 planar graph exist in planar graphs with △≤5,where △ denotes the maximum degree of a planar graph.It is proved that the chromatic index of every simple planar graph G with △=5 and without 3-cycles or 4-cycles or 5-cycles is 5,i.e,such planar graphs to be class 1.
出处 《苏州科技学院学报(自然科学版)》 CAS 2011年第4期22-27,共6页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 国家自然科学基金资助项目(NSFC11001265) 中央高校基本科研业务费专项基金资助项目(2010LKSX06)
关键词 平面图 边染色 最大度 第一类图 planar graph edge coloring maximum degree class 1
  • 相关文献

参考文献9

  • 1Vizing V G. On an estimate of the chromatic index of a p-graph[J]. Diskret Analiz, 1964,3 ( 1 ) : 25-30.
  • 2Vizing V G. Critical graphs with given chromatic class[J]. Diskret Analiz, 1965,5 (1):9-17.
  • 3Sanders D P,Zhao Yue. Planar graphs of maximum degree seven are class 1[J]. Combin Theory Ser B,2001,83(2) :201-212.
  • 4Zhang Liming. Every planar with maximum degree 7 is of class 1[J]. Graphs Combin ,2000,16(4) :467-495.
  • 5Zhou Guofei. A note on graphs of class l[J]. Discrete Math,2003,262(1-3):339-345.
  • 6Bu Yuehua,Wang Weifan. Some sufficient conditions for a planar graph of maximum degree six to be class 1 [J]. Discrete Math, 2006,306 (13): 1440-1445.
  • 7Li Xuechao, Luo Rong. Edge coloring of embedded graphs with large girth[J]. Graphs Combin, 2003,19 (3):393-401.
  • 8周正同,苗连英.最大度是5的可平面图是第一类的充分条件[J].山东大学学报(理学版),2010,45(4):24-26. 被引量:3
  • 9倪伟平.最大度是4的可平面图是第一类图的充分条件[J].华东师范大学学报(自然科学版),2010(3):85-91. 被引量:4

二级参考文献12

  • 1VIZING V G. On an estimate of the chromatic index of a p-graph[J]. Diskret Analiz, 1964, 3( 1 ) :25-30.
  • 2VIZING V G. Critical graphs with given chromatic class[J]. Diskret Analiz, 1965, 5 (1) :9-17.
  • 3SANDERS D P, ZHAO Yue. Planar graphs of maximum degree seven are class 1[J]. Combin Theory: Ser B, 2001, 83 (2) : 201-212.
  • 4ZHANG Liming. Every planar with maximum degree 7 is of class 1[J]. Graphs Combin, 2000, 16(4) :467-495.
  • 5ZHOU Guofei. A note on graphs of class 1 [J]. Discrete Math, 2003, 262(1-3) :339-345.
  • 6BU Yuehua, Wang Weifan. Some sufficient conditions for a planar graph of maximum degree six to be class 1 [J]. Discrete Math, 2006, 306 (13) : 1440-1445.
  • 7LI Xuechao, Luo Rong. Edge coloring of embedded graphs with large girth [J].Graphs Combin, 2003, 19 (3) :393-401.
  • 8VIZING V G.Critical graphs with given chromatic class[J].Diskret Analiz,1965(5):9-17.
  • 9LI X,LUO R.Edge coloring of embedded graphs with large girth[J].Graphs Combin,2003,19(3):393-401.
  • 10LAM P,LIU J,SHIU W,et al.Some sufficient conditions for a planar graph to be of classl[J] ,Congr Numer,1999,136:201-205.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部