期刊文献+

一类四阶两点边值问题的多重正解

Multiple Positive Solutions of Forth-Order Two-Point Boundary Value Problem
下载PDF
导出
摘要 讨论一类两参数四阶两点边值问题,利用锥上的不动点指标理论及拓扑度方法,在一定条件下得到了该问题多重正解的存在性. This paper is devoted to study the existence of multiple positive solutions of the forth-order twopoint boundary value problem with two-parameter. Through applying fixed point index and topological degree method, the multiplicity of solutions of Forth-Oder Two-Point Boundary Value Problem can be proved to exist under suitable conditions.
作者 李万军
出处 《陇东学院学报》 2011年第6期1-5,共5页 Journal of Longdong University
关键词 四阶两点边值问题 正解 多解 不动点指数 Forth-Order Two-point BVP positive solution multiple solutions cone fixed point index
  • 相关文献

参考文献6

  • 1R. Ma and H. Wang, On the existence of positive solutions of fourth-order ordinary differential equations [J], Appl. Anal. 59(1995), 225-231.
  • 2Z. Bai and H. Wang, On positive solution of some nonlinear fourth-order beam equation [ J ] , J. Math. Anal. Appl. 270 (2002), 357 - 368 .
  • 3M. A. Del Pino and R. F. Manasevieh, Existence for a fourth-order boundary value problem under a two-parameter nonresonanee condition [ J ] , Proc. Amet. Math. Soe. 112(1991), 81-86.
  • 4Y. Li, Positive solutions of fourth-order boundary value problems with two parameters [ J ], J. Math. Anal. Appl. 281 (2003), 477 - 484.
  • 5T. Gyulov and S. Tersian, Existence of trivial and nontrivial solutions of a fourth-order ordinary differential Equation[J], E. J. Dif. Equs. 2004 (41) (2004), 1 - 14.
  • 6R. T. Avery, J. M. Davis and J. Henderson, Three symmetric positive solutions for Lidstone problems by a Generalization of the Leggett-Williams Theorem[ J ], E. J. Dif. Equs. 2000(40)(2000), 1- 15.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部