期刊文献+

基于层次化SLAM的未知环境级联地图创建方法 被引量:3

A Layered SLAM based Approach for Unknown Environment Hierarchical Map Building
下载PDF
导出
摘要 针对大规模环境下障碍物、环境传感器、移动机器人自身位姿均未知的情况,提出层次化机器人同时定位与空间级联地图创建(SLAM)方法.首先建立子地图与拓扑节点两层结构环境模型,然后利用环境传感器感知信息辅助子地图局部坐标框架的在线创建和更新,同时在拓扑结构创建过程中,利用coupling summation公式推算节点间相对坐标关系.在机器人轨迹闭合检测的基础上,引入加权扫描匹配法和松弛法对拓扑结构进行优化,确保地图的全局一致性.实验验证了该方法的可行性与有效性. A layered simultaneous localization and mapping(SLAM) approach for building spatial hierarchical maps is proposed in situations that obstacles,environmental sensors and robot poses are all unknown in large-scale environments. Firstly,a two-layered environmental model is established,which is composed of a submap layer and a topological node layer. Then the perception information of the environmental sensors is employed to assist the online creation and update of submaps local coordinate framework.While building the topological structure,the coupling summation equation is utilized to compute the relative positions between nodes.Based on the loop-closure detection result,the weighted scan matching algorithm and the relaxation algorithm are introduced to optimize the topological structure,which ensures global consistency of the map. Experimental results validate the feasibility and effectiveness of the approach.
出处 《机器人》 EI CSCD 北大核心 2011年第6期736-741,共6页 Robot
基金 国家自然科学基金资助项目(61105094 61075090 61005092)
关键词 同时定位与地图创建 级联地图 全局一致性 拓扑优化 移动机器人 simultaneous localization and mapping hierarchical map global consistency topological optimization mobile robot
  • 相关文献

参考文献14

  • 1Dellaert F, Kaess M. Square root SAM: Simultaneous localization and mapping via square root information smoothing[J]. International Journal of Robotics Research, 2006, 25(12): 1181- 1203.
  • 2Montemerlo M. FastSLAM: A factored solution to the simultaneous localization and mapping problem with unknown data association[D]. Pittsburgh, PA, USA: Robotics Institute, Carnegie Mellon University, 2003.
  • 3Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23 (1): 34-46.
  • 4Estrada C, Neira J, Tardos J D. Hierarchical SLAM: Real-time accurate mapping of large environments[J]. IEEE Transactions on Robotics, 2005, 21(4): 588-596.
  • 5Bosse M, Newman P M, Leonard J, et al. An atlas framework for scalable mapping[C]//International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 1899-1906.
  • 6Tardos J D, Neira J, Newman P M, et al. Robust mapping and localization in indoor environments using sonar data[J]. International Journal of Robotics Research, 2002, 21(4): 311-330.
  • 7Clemente L A, Davison A, Reid I, et al. Mapping large loops with a single hand-held camera[M]//Sukhatme G S, Schaal S, Burgard W, et al (Editor). Robotics: Science and Systems. Cambridge, MA, USA: MIT Press, 2007.
  • 8Leonard J J, Feder H J S. Decoupled stochastic mapping[R]. Cambridge, MA, USA: MIT Press, 2001.
  • 9Ho K L, Newman P M. Loop closure detection in SLAM by combining visual and spatial appearance[J]. Robotics and Au- tonomous Systems, 2006, 54(9): 740-749.
  • 10Pfister S T, Kreichbaum K L, Roumeliotis S I, et al. Weighted range sensor matching algorithms for mobile robot displacement estimation[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 1667-1674.

同被引文献44

  • 1王璐,蔡自兴.未知环境中基于视觉显著性的自然路标检测[J].模式识别与人工智能,2006,19(1):100-105. 被引量:8
  • 2Hwang S Y, Song]B. Monocular Vision-Based SLAM in Indoor Environment Using Corner, Lamp, and Door Features from Upward?Looking Camera. IEEE Trans on Industrial Electronics, 2011, 58( 10): 4804-4812.
  • 3Chai Xiaojie, Wen Feng , Yuan Kui. Fast Vision-Based Object Segmentation for Natural Landmark Detection on Indoor Mobile Robot//Proc of the International Conference on Mechatronics and Automation. Beijing, China, 2011: 2232-2237.
  • 4Hayet]B, Lerasle F, Devy M. A Visual Landmark Framework for Mobile Robot Navigation. Image and Vision Computing, 2007, 25 (8): 1341-1351.
  • 5Choset H, Nagatani K. Topological Simultaneous Localization and Mapping (SLAM): Toward Exact Localization without Explicit Localization. IEEE Trans on Robotics and Automation, 2001, 17 (2): 125-137.
  • 6Nuilez P, Vazquez-Martin R, del Toro JC, et al. Natural Landmark Extraction for Mobile Robot Navigation Based on an Adaptive Curvature Estimation. Robotics and Autonomous Systems, 2008, 56 (3): 247-264.
  • 7Beeson P, Jong N K. Kuipers B. Towards Autonomous Topological Place Detection Using the Extended Voronoi Graph//Proc of the IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 4373 -4379.
  • 8Ranganathan A, Dellaert F. Bayesian Surprise and Landmark Detection//Proc of the IEEE International Conference on Robotics and Automation. Kobe, Japan, 2009: 2017-2023.
  • 9Itti L, Baldi P. A Principled Approach to Detecting Surprising Events in Video//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 1: 631-637.
  • 10Alvarez S, Vanrell M. Texton Theory Revisited: A Bag-of-Words Approach to Combine Textons. Pattern Recognition, 2012, 45 (12) : 4312-4325.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部