期刊文献+

一种基于聚类技术的免疫推荐算法

Immune Network Recommendation Algorithm Based on Clustering
下载PDF
导出
摘要 在网络时代,如何通过为用户提供更加个性化的服务,提高其商品的吸引力,进而为企业带来更大的收益,成为了网站所面临的核心问题。通过对自然免疫学和人工免疫学理论的研究,着重讨论了将人工免疫网络技术应用于电子商务个性化推荐的思想,提出了使用形态空间模型对推荐技术及其存在问题的解释方法,并提出了聚类免疫推荐算法。实验结果表明:该算法能高效和准确地解决个性化推荐问题,具有很好的应用价值。 In internet times, it is an important challenge that how to make more personalized services for user, increase the attraction of the goods, and get greater benefits for company. Through studying the natural immune and the artificial immune theories, it described the idea of using the artificial immune technique in e-commerce personal recommendation, and gave the explaining method for recommender technique and its problems with the shape-space model. The clustering immune network recommendation algorithm was given. Experimental result shows that the proposed algorithm can solve the recommender problem more highly and efficiently, and has the advantage of good application value.
出处 《辽宁石油化工大学学报》 CAS 2011年第4期76-79,共4页 Journal of Liaoning Petrochemical University
关键词 推荐系统 人工免疫 聚类技术 形态空间模型 Recommendation system Artificial immune Clustering technique Shape-space model
  • 相关文献

参考文献7

  • 1Kohavi R. Applications of data mining to electronic commerce [J]. Data mining and knowledge discovery, 2001, 5(1) :5-10.
  • 2Scllafer J B, Konstan J A, Riedl J. E-commerce recommendation applications [J]. Data mining and knowledge discovery, 2001,5(1):115-153.
  • 3曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 4Steve Cayzer, Uwe Aickelin. A Recommender system based on the immune network// Proceedings CEC2002[C], Honolulu: IEEE press, 2002: 807 - 813.
  • 5Jerne N K. Towards a network theory of the immune system[J]. Annual immunology, 1974, 125(1):373-389.
  • 6Gilles Brassard, Paul Bratley. Fundamentals of algorithmics[M]. New Jersey.. Prentice hall, 2003.
  • 7刘洋.一种基于协同过滤技术的自适应推荐系统[J].辽宁石油化工大学学报,2007,27(3):75-78. 被引量:3

二级参考文献49

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212.
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295.

共引文献395

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部