摘要
研究了一个新的不同于Lorenz系统、Chen系统和Lü系统、T系统、Qi系统的五维自治混沌系统,该系统有1个参数,6个非线性乘积项;得到了该系统的一个五维椭球最终有界集和正向不变集界估计;最后,结果应用到混沌同步之中去,数值仿真显示了方案的可行性.
We have studied a five-dimension autonomous chaotic system which is different from the Lorenz system, Chen system, Lu system, T system and Qi system. The system has one parameter and six non-linear product terms. For this system, we derive a bound estimation for five-dimensional ellipsoidal ultimate bound set and positively invariant set. Finally, the result is applied to the chaos synchronization. Numerical simulations are presented to show the effectiveness of the proposed scheme.
出处
《重庆工商大学学报(自然科学版)》
2011年第6期551-557,共7页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
国家自然科学青年基金(No.10601071)
重庆市自然科学基金(No.2009BB3185)
中央高校基本科研业务费资助(No.CDJXS10100029
No.CDJXS11100026)
关键词
混沌系统
分岔图
混沌吸引子
同步
数值模拟
chaotic system
bifurcation diagram
chaotic attractor
synchronization
numerical simulations