期刊文献+

一个多维混沌系统的最终有界集和正向不变集及其在同步之中的应用 被引量:3

The Ultimate Bound Set and Positively Invariant Set for a Multi-dimension Chaotic System and Its Application in Chaos Synchronization
下载PDF
导出
摘要 研究了一个新的不同于Lorenz系统、Chen系统和Lü系统、T系统、Qi系统的五维自治混沌系统,该系统有1个参数,6个非线性乘积项;得到了该系统的一个五维椭球最终有界集和正向不变集界估计;最后,结果应用到混沌同步之中去,数值仿真显示了方案的可行性. We have studied a five-dimension autonomous chaotic system which is different from the Lorenz system, Chen system, Lu system, T system and Qi system. The system has one parameter and six non-linear product terms. For this system, we derive a bound estimation for five-dimensional ellipsoidal ultimate bound set and positively invariant set. Finally, the result is applied to the chaos synchronization. Numerical simulations are presented to show the effectiveness of the proposed scheme.
出处 《重庆工商大学学报(自然科学版)》 2011年第6期551-557,共7页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学青年基金(No.10601071) 重庆市自然科学基金(No.2009BB3185) 中央高校基本科研业务费资助(No.CDJXS10100029 No.CDJXS11100026)
关键词 混沌系统 分岔图 混沌吸引子 同步 数值模拟 chaotic system bifurcation diagram chaotic attractor synchronization numerical simulations
  • 相关文献

参考文献6

  • 1LI D, LU J A, WU X Q, et al. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system [ J]. Journal of Mathematical Analysis and Applications,2006,323 (2) : 844-853.
  • 2ZHANG F C, SHU Y L, YANG H L. Bounds for a new chaotic system and its application in chaos synchronization. Commun Nonlinear Sci Numer Simulat ,2011,16 ( 3 ) : 1501-1508.
  • 3LIAO X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization [ J]. Sci China ser E ,2004,34 : 1404-1419.
  • 4BOICHENKO V A, LEONOV G A. Dimension theory for ordinary differential equations [ M ]. Wiesbaden: Teubner Verlag,2005.
  • 5廖晓昕,罗海庚,傅予力,谢胜利,郁培.论Lorenz系统族的全局指数吸引集和正向不变集[J].中国科学(E辑),2007,37(6):757-769. 被引量:25
  • 6WANG P, LID M, HU Q L. Bounds of the hyper-chaotic Lorenz-Stenflo sys -tern [ J ]. Communications in Nonlinear Science and Numeical Simulations ,2010,15 (9) : 2514-2520.

二级参考文献10

  • 1廖晓昕.论Lorenz混沌系统全局吸引集和正向不变集的新结果及对混沌控制与同步的应用[J].中国科学(E辑),2004,34(12):1404-1419. 被引量:20
  • 2Lorenz Z N. Deterministic non-periodic flow. J Atoms Sci, 1963, 20:130--141.
  • 3Lorenz E N. The Essence of Chaos. Washington: USA University of Washington Press, 1993.
  • 4Sparrow C. The Lorenz Equations: Bifurcation, Chaos and Strange Attractors. Berlin-Heidelberg, New York: Springer-Verlag, 1976.
  • 5Stwart I. The Lorenz attractor exists. Nature, 2002, 406:948--949.
  • 6Warwick T. A rigorous ODE solver and smale's 14th problem. Found Comput, Math, 2002, 2:53--117.
  • 7Leonov G A, Bunin A L, Kokxh N. Atractor localization of the Lorenz system. ZAMM, 1987, 67:649--656.
  • 8Leonov G A. Bound for attractors and the existence of Homoclinic orbits in the Lorenz system. J Appl Math Mechs, 2001, 65(1): 19--32.
  • 9Li D M, Lu J A, Wa X Q, et al. Estimating the bounded for the Lorenz family of chaotic systems. Chaos, Solutions Fractals, 2005, 23:529--534.
  • 10Yu P, Liao X X. New estimates for globally attracvtive and positive invariant set ofyhe family of the Lorenz system. Int J Bifurcation & Chaos, 2006, 16(11): 3383--3390.

共引文献24

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部