期刊文献+

采用动态故障树分析诊断系统故障的信息融合法 被引量:13

Information Fusion Method for System Fault Diagnosis Based on Dynamic Fault Tree Analysis
下载PDF
导出
摘要 为提高系统故障诊断效率,提出了一种利用动态故障树分析诊断系统故障的信息融合方法,该方法充分发挥动态故障树建模和贝叶斯网络推理各自优势,通过集成系统结构信息和传感器信息来诊断系统故障.采用高效的零压缩二元决策图生成系统所有最小割集,并采用贝叶斯网络方法计算部件和最小割集的诊断重要度;根据传感器证据信息对系统特征函数化简,同时对部件和证据条件下割集的诊断重要度进行更新;综合考虑部件和割集诊断重要度设计了系统诊断决策算法,生成诊断决策树以指导维修人员恢复系统故障;最后通过实例验证了该故障诊断方法的有效性. An information fusion method was proposed to diagnose system faults with dynamic fault tree(DFT) analysis to improve the efficiency of system diagnosis,which made full use of the advantages of both DFT for modeling and Bayesian networks(BN) for the inference ability and incorporated system structure information as well as sensors data into fault diagnosis.All minimal cut sets were generated via an efficient zero-suppressed binary decision diagram,while the diagnostic importance factor of components and minimal cut sets were calculated using BN.Furthermore,these reliability analysis results together with the characteristic function of the system were updated after receiving the evidence data from sensors and used to develop diagnostic decision algorithm to optimize system diagnosis.Then,a diagnostic decision tree was generated to guide the maintenance crew to recover a system.Finally,an example was given to illustrate the efficiency of this method.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期1699-1704,共6页 Journal of Tongji University:Natural Science
基金 国家"863"高技术研究发展计划资助项目(2007AA11Z247) 国家自然科学基金资助项目(61074139)
关键词 动态故障树 离散时间贝叶斯网络 诊断重要度 期望诊断代价 dynamic fault tree discrete-time Bayesian network diagnostic importance the expected diagnosis cost
  • 相关文献

参考文献16

  • 1周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:307
  • 2Moret B M. Decision trees and diagrams [ J ]. Computing Surveys, 1982,14(4) :593.
  • 3Pattipati K R,Alexandridis M G. Application of heuristic search and information theory to sequential diagnosis [J].IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20 (4) :872.
  • 4Shakeri M, Raghavan V, Pattipati K R, et al. Sequential testing algorithms for multiple fault diagnosis[-J]. IEEE Transactions on Systems, Man, and Cybernetics, 2000,30 (1) : 1.
  • 5Assaf T, Dugan J B. Automatic generation of diagnostic expert systems from fault trees [ C] // Annual Reliability and Maintainability Symposium. Los Angeles: IEEE Reliability Society, 2003: 143 - 147.
  • 6Assaf T, Dugan J B. Design for diagnosis using a diagnostic evaluation measure [ J ]. IEEE Instrumentation and Measurement Magazine, 2006,4 : 37.
  • 7倪绍徐,张裕芳,易宏,梁晓锋.基于故障树的智能故障诊断方法[J].上海交通大学学报,2008,42(8):1372-1375. 被引量:78
  • 8陶勇剑,董德存,任鹏.采用故障树分析诊断系统故障的改进方法[J].哈尔滨工业大学学报,2010,42(1):143-147. 被引量:30
  • 9Assaf T, Dugan J B. Diagnosis based on reliability analysis using monitors and sensors[J]. Reliability Engineering and System Safety, 2008,93 (4) : 509.
  • 10TANG Zhihua, Dugan J B. Minimal cut set/sequence generation for dynamic fault trees [C] // Annual Reliability and Maintainability Symposium on procduct Quality and Integrity. Los Angeles:American Institute of Aeronautics and Astronautics, 2004 : 207 - 213.

二级参考文献130

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 6Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 7Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 8Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 9Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 10Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074

共引文献409

同被引文献94

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部