摘要
The package and system level temperature and thermal stress distributions of 10 W light emitting diode (LED) with 4 chips and 100 W LED with 100 chips were investigated using finite element analysis. The chips were arranged on a Si sheet which is soldered on the copper/diamond composite slug with very high conductivity. The experimental results show that the maximal temperature appears in the chips of both two high power LEDs packages. Compared with the 10 W LEDs package with 4 chips array, the heat issue caused by stacking and coupling of the heat in 100 W LEDs package with 100 chips array is more serious. The chip temperature in the center of the array is much higher, and it decreases with the distance between the chip and the center of LEDs increases. Great thermal stress lies between the chips and the solder, which will reduce the reliability of the package.
The package and system level temperature and thermal stress distributions of 10 W light emitting diode (LED) with 4 chips and 100 W LED with 100 chips were investigated using finite element analysis. The chips were arranged on a Si sheet which is soldered on the copper/diamond composite slug with very high conductivity. The experimental results show that the maximal temperature appears in the chips of both two high power LEDs packages. Compared with the 10 W LEDs package with 4 chips array, the heat issue caused by stacking and coupling of the heat in 100 W LEDs package with 100 chips array is more serious. The chip temperature in the center of the array is much higher, and it decreases with the distance between the chip and the center of LEDs increases. Great thermal stress lies between the chips and the solder, which will reduce the reliability of the package.
基金
Funded by the High-Tech Research and Development Program of China (No. 2008AA03Z505)